数据结构实验15-排序2

目录

【id:123】【20分】A. 快速排序

【id:205】【20分】B. A DS选择排序_最小绝对差

【id:124】【20分】C. DS内排—堆排序

【id:129】【20分】D. 2路归并排序

【id:142】【20分】E. 基数排序(内部排序)


【id:123】【20分】A. 快速排序

时间限制1s

内存限制128MB

题目描述

给出一个数据序列,使用快速排序算法进行从小到大的排序

输入

第一行输入t,表示有t个测试示例
第二行输入n,表示第一个示例有n个数据
第三行输入n个数据,都是正整数,数据之间用空格隔开
以此类推

输出

每组测试数据,输出每趟快排的结果,即每次排好一个数字结果(长度为1的子序列,不用排,不用输出)。不同测试数据间用空行分隔。

#include <iostream>  
using namespace std;
int n;//全局变量n
int partition(int arr[], int low, int high);//函数声明
// 快速排序函数  
void quickSort(int arr[], int low, int high) {
    if (low < high) {
        // 获取分区的索引  
        int pivotIndex = partition(arr, low, high);
        // 输出每趟排序结果  
        for (int i = 0; i < n; i++) {
            if (i == n - 1) {
                cout << arr[i];
            }
            else {
                cout << arr[i] << " ";
            }
        }
        cout << endl;
        // 递归调用快速排序  
        quickSort(arr, low, pivotIndex - 1);
        quickSort(arr, pivotIndex + 1, high);
    }
}
// 分区函数  
int partition(int arr[], int low, int high) {
    int pivot = arr[low]; // 选择第一个元素作为基准  
    int i = low+1; //基准后一个元素的索引
    for (int j = low+1; j <= high; j++) {
        // 如果当前元素小于基准  
        if (arr[j] < pivot) {
            swap(arr[i], arr[j]); // 交换  
            i++; // 增加小于基准的元素索引  
        }
    }
    // 将基准元素放到正确位置,再换回来
    swap(arr[low], arr[i-1]);
    return i - 1; // 返回基准元素的索引  
}

int main() {
    int t; cin >> t;
    while (t--) {
        cin >> n;
        int* arr = new int[n];
        for (int i = 0; i < n; i++) {
            cin >> arr[i];
        }
        // 调用快速排序  
        quickSort(arr, 0, n - 1);
        if(t!=0)
            cout << endl;
    }
    return 0;
}

【id:205】【20分】B. A DS选择排序_最小绝对差

时间限制1s

内存限制128MB

题目描述

给你一个整数数组arr,其中每个元素都不相同。

请你找到所有具有最小绝对差的元素对,并按升序的顺序输出。

最小绝对差,指的是两个元素的差值的绝对值在整个数组中是最小的。

例如,对于数组[4,2,1,3],元素对[4,2]的绝对差2大于[2,1]的绝对差1。

如果算法涉及到排序,请使用选择排序。

输入

第一行输入t,表示有t个测试样例。

第二行起,每一行首先输入n,表示arr的数组长度,接着输入n个整数。

以此类推,共输入t个测试样例。

输出

每一行按升序输出所有具有最小绝对差的元素对,每个元素对之间用空格隔开。

共输出t行。

注意输出末尾的空格。

#include <iostream>  
using namespace std;
int main() {
    int t; cin >> t;
    while (t--) {
        int n;
        cin >> n;
        int* arr = new int[n];
        for (int i = 0; i < n; i++) {
            cin >> arr[i];
        }
        int set = 0;//选择排序开始的下标
        while (set!=n-1) {//选择排序
            int k = set;
            for (int i = k; i < n; i++) {//找最小的
                if (arr[i] < arr[k]) {
                    k = i;
                }
            }
            swap(arr[set], arr[k]);
            set++;
        }
        int min = 1000000;
        for (int i = 0; i < n-1; i++) {//找到最小的差值
            if (arr[i+1] - arr[i] < min) {
                min = abs(arr[i] - arr[i + 1]);
            }
        }
        for (int i = 0; i < n - 1; i++) {
            if (arr[i+1] - arr[i] == min) {
                cout << "[" << arr[i] << "," << arr[i + 1] << "] ";
            }
        }
        if(t!=0)
            cout << endl;
    }
    return 0;
}

【id:124】【20分】C. DS内排—堆排序

时间限制1s

内存限制128MB

题目描述

给定一组数据,使用堆排序完成数据的降序排序。(建小顶堆)。

输入

数据个数n,n个整数数据

输出

初始创建的小顶堆序列

每趟交换、筛选后的数据序列,输出格式见样例

#include<iostream>
using namespace std;
void Reset(int arr[],int begin,int end) {
    int key = arr[begin];
    for (int i = begin * 2; i <= end; i *= 2) {//寻找左右子树
        if (i<end && arr[i] > arr[i+1]) {//找左右子树更小的那个,且不越界
            i++;
        }
        if (key <= arr[i]) {//如果满足小项堆
            break;
        }
        arr[begin] = arr[i];//否则交换
        begin = i;
    }
    arr[begin] = key;
}
void Reset1(int arr[], int begin, int end) {
    int key = arr[begin];
    for (int i = begin * 2; i <= end; i *= 2) {//寻找左右子树
        if (i<end && arr[i] < arr[i + 1]) {//找左右子树更小的那个,且不越界
            i++;
        }
        if (key >= arr[i]) {//如果满足小项堆
            break;
        }
        arr[begin] = arr[i];//否则交换
        begin = i;
    }
    arr[begin] = key;
}
int main()
{
    int n;
    cin >> n;
    int* arr = new int[n+1];
    arr[0] = 0;
    for (int i = 1; i <= n; i++) {
        cin >> arr[i];
    }
    for (int i = n / 2; i >= 1; i--) {
        Reset(arr, i, n);
    }
    cout << n << " ";
    for (int j = 1; j <= n; j++) {
        if (j != n)
            cout << arr[j] << " ";
        else
            cout << arr[j];
    }
    cout << endl;
    int end1 = n;
    for (int i = 1; i < n; i++) {
        swap(arr[1], arr[end1]);
        end1--;
        for (int i = end1 / 2; i >= 1; i--) {
            Reset(arr, i, end1);
        }
        cout << n << " ";
        for (int j = 1; j <= n; j++) {
            if (j != n)
                cout << arr[j] << " ";
            else
                cout << arr[j];
        }
        if(i!=n-1)
            cout << endl;
    }
    return 0;
}

【id:129】【20分】D. 2路归并排序

时间限制1s
内存限制128MB

题目描述

给定一组正整数序列,执行2路归并排序算法得到由小到大的序列。要求按2路归并排序树,自下而上自左向右的次序,输出每个有序的子序列。

自顶向下进行,即递归调用 MergeSort(left, mid)MergeSort(mid, right)

本题约定数组区间为[1, n], mid = (left + right) / 2,递归子区间为 [left, mid][mid + 1, right]

输入

第1行该序列的正整数个数n

第2行n个正整数,元素之间由空格分开

输出

m: 表示2路归并排序树的结点个数

m行,每行是有序的子序列

#include <iostream>
#include <stack>
#include <queue>
using namespace std;
const int maxn = 1e4 + 10;
int dp[maxn];
int emerge[maxn];
int n;
struct nod
{
    int s, e;//s是起始点,e是终点
    nod* left, * right;//left是左子节点,right是右子节点
    nod()
    {
        left = NULL;
        right = NULL;
    }
    nod(int a, int b)
    {
        s = a;
        e = b;
        left = NULL;
        right = NULL;
    }
};
stack<nod*>ss;
void insert(nod*& root, int left, int right)//这里插入用到了递归
{
    if (left >= right)//这个意思是如果节点是独自一个的,也要插入生成节点
    {
        if (root == NULL)
        {
            root = new nod(left, right);
        }
        return;
    }
    if (root == NULL)//如果这个节点为空就生成一个新节点,起始点就是left,终点就是right
        root = new nod(left, right);
    int mid = (left + right) / 2;//折半
    insert(root->left, left, mid);//左子树就左半边
    insert(root->right, mid + 1, right);//右子树就右半边

}
nod* build()
{
    nod* root;//n是总共有多少个元素
    root = new nod(1, n);//建立根节点,根节点在最顶所以就是最开始的1到n
    int mid = (1 + n) / 2;//mid就是折半嘛
    insert(root->left, 1, mid);//然后左半边
    insert(root->right, mid + 1, n);//右半边
    return root;
}
queue<nod*>p;
int height;
void cengxu(nod* root)
{
    if (root == NULL)
        return;
    ss.push(root);//ss是我建立的堆
    p.push(root);//p是我建立的队列,层序遍历需要用到队列嘛
    while (!p.empty())//如果队列非空就进入循环
    {
        nod* q = p.front();//取出一个节点
        p.pop();
        if (q->right != NULL)//然后本题思路是先右节点,所以就如果存在就放入队列里面,并且放入堆里面
        {
            p.push(q->right);
            ss.push(q->right);
            height++;//height是我用来统计总共有几个节点的,有就+1,然后我的height初始值为1,所以上面建立根就没+1了
        }
        if (q->left != NULL)//然后就是左子节点,一样的操作
        {
            p.push(q->left);
            ss.push(q->left);
            height++;
        }
    }
}
void out(int l, int r)
{
    for (int i = l; i <= r; i++)//从左边界到有边界输出
    {
        if (i == r) {
            cout << dp[i];
        }else
            cout << dp[i] << " ";
    }
    cout << endl;
}
void emerge_sort(nod* root)
{
    if (root == NULL)
        return;
    int left = root->s, right = root->e;//获取这个节点的起点和终点
    int mid = (left + right) / 2;//折半
    int i, j, k;
    for (i = k = left, j = mid + 1; j <= right && i <= mid;)//这部分就是排序算法了
    {                            //空数组emerge[],和原顺序数组dp[],
        if (dp[i] <= dp[j])      //实现思路我举个例子原数组六个树1,6,5,2,3,4,然后对半分开
            emerge[k++] = dp[i++];//left指向1,right指向4,mid+1指向2,分成1,5,6 | 2,3,4
        else                       //1<2,emerge:1  5>2,emerge:1,2  5>3,emerge:1,2,3  5>4,emerge:1,2,3,4
            emerge[k++] = dp[j++]; //然后就退出这个循环了
    }
    while (i <= mid)          //前面部分还没放完,但是第二部分放完了,那就把前面部分都放在后面部分
    {                          //emerge:1,2,3,4,5,6
        emerge[k++] = dp[i++];
    }
    while (j <= right)        //这个意思也一样,但是我举得例子里面他已经放完了就不
    {
        emerge[k++] = dp[j++];
    }
    for (int m = left; m <= right; m++)//然后我们将emerge的数组放进dp里面,覆盖掉之前没排序的
    {
        dp[m] = emerge[m];
    }
    out(left, right);//然后这里我们就输出一下这个节点

}
int main()
{
    while (1)
    {
        cin >> n;
        for (int i = 1; i <= n; i++)
        {
            cin >> dp[i];
        }
        height = 1;
        nod* root = build();
        cengxu(root);
        cout << height << endl;
        while (!ss.empty())
        {
            emerge_sort(ss.top());
            ss.pop();
        }
        break;
    }
}

【id:142】【20分】E. 基数排序(内部排序)

时间限制1s
内存限制128MB

题目描述

给定一组数据,对其进行基数升序排序。

输入

测试次数t

每组测试数据一行:数字个数n,后跟n个数字(整数)

注:如果序列中有负数,则每个数字加上最小负数的绝对值,使序列中的数均大于等于0。排序后再减去最小负数的绝对值。

输出

对每组测试数据,输出每趟分配、收集的结果。若分配中该位没有数字,输出NULL。具体输出格式见样例。每组测试数据间以空行分隔。

如果序列中有负数,最后输出减去最小负数绝对值的序列值。

#include <iostream>
#include <queue>
using namespace std;

typedef struct ListNode{
    int data;
    struct ListNode *next;
} ListNode;

int Get(int k, int a)
{
    int temp = 1;
    for(int i=0; i<k; i++)
        temp *= 10;
    a %= temp;
    temp /= 10;
    a /= temp;
    return a;
}

void RadixSort(int v, int n, int *a)
{
    int i;
    ListNode *p;
    for(int k=0; k<v; k++)
    {
        queue<ListNode *> b[10];
        for(i=0; i<n; i++)
        {
            int num = Get(k+1, a[i]);
            p = new ListNode;
            p->data = a[i];
            p->next = NULL;
            b[num].push(p);
        }
        queue<ListNode *> c;
        for(i=0; i<10; i++)
        {
            cout<<i<<':';
            if(b[i].empty())
                cout<<"NULL"<<endl;
            else
            {
                while(!b[i].empty())
                {
                    p = b[i].front();
                    c.push(p);
                    cout<<"->"<<p->data;
                    b[i].pop();
                }
                cout<<"->^"<<endl;
            }
        }
        int len = c.size();
        for(i=0; i<len; i++)
        {
            p = c.front();
            c.pop();
            a[i] = p->data;
            if(i!=len-1)
                cout<<p->data<<' ';
            else
                cout<<p->data<<endl;
        }
    }
}

int main(void)
{
    int t;
    cin>>t;
    while(t--)
    {
        int i, n;
        cin>>n;
        int a[n];
        for(i=0; i<n; i++)
            cin>>a[i];
        int abs = 0;
        int max = 0;
        for(i=0; i<n; i++)
        {
            if(a[i]<abs)
                abs = a[i];
            if(a[i]>max)
                max = a[i];
        }
        for(i=0; i<n; i++)
            a[i] += -abs;
        max += -abs;
        int v = 0;
        while(max)
        {
            max /= 10;
            v++;
        }
        RadixSort(v, n, a);
        cout<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值