- 博客(11)
- 收藏
- 关注
原创 从GPT到Transformer:揭开自然语言处理的核心技术面纱
近年来,Chat-GPT在人工智能领域热度持续攀升,成为人们热议的焦点。那么G、 P 、T到底是什么含义呢?
2025-05-22 11:12:27
972
原创 一文读懂什么是LLM
是一类基于深度学习的自然语言处理系统,其核心特征是具备和,能够通过自监督学习捕获人类语言的复杂语义结构、长距离依赖关系及世界知识。技术实现上,LLM通常基于Transformer架构,通过预训练-微调(Pre-train-Finetune)范式,在文本生成、理解、推理等任务中展现出接近人类的语言处理能力。
2025-05-20 14:50:20
779
原创 一文搞懂神经网络:从原理到 Python 实战
人工神经网络(Artificial Neural Network,ANN)的设计灵感源于生物大脑中神经元的工作机制。在生物神经系统中,神经元是基本的信息处理单元,它通过树突接收来自其他神经元的信号,这些信号在细胞体中进行整合,当整合后的信号强度超过一定阈值时,神经元就会被激活,并通过轴突将信号传递给其他神经元。神经元之间通过突触相连,突触的强度决定了信号传递的效率,这种强度可以通过学习和经验进行调整。人工神经网络借鉴了上述生物学原理,由大量的人工神经元(节点)组成。
2025-05-14 16:04:50
811
原创 大模型微调避坑指南:从ChatGPT到Llama的实战经验
参数规模优先:33B的LLaMA在同等量化级别下效果通常优于13B模型,资源允许时优先选择参数更多的基础模型;量化策略:低量化模型(如fb16)相比高精度模型推理效率更高,但需注意量化误差对任务敏感性的影响。
2025-04-17 16:55:41
922
原创 ICLR 2025:打破信息差 用正确姿势蹭资源
作为与NeurIPS、ICML齐名的机器学习三大顶会之一,国际学习表征会议(International Conference on Learning Representations, ICLR)始终站在表征学习与深度学习研究的最前沿。ICLR自2013年由深度学习先驱Yoshua Bengio等人发起以来,已成为机器学习领域最具影响力的顶级会议之一。其以“表征学习(Representation Learning)”为核心议题,专注于探索数据背后的本质结构与高效建模方法。
2025-04-09 14:09:47
754
原创 算力革命:数字时代的新型生产力演进
芯片制程:从14nm到3nm的物理极限突破(台积电/三星路线图)异构计算架构:CPU+GPU+FPGA+ASIC的协同(NVIDIA Grace Hopper架构解析)光子芯片:MIT最新研究展示光计算能效比提升1000倍。
2025-04-02 12:03:09
485
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人