提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
什么是动态规划
动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子
问题,使用动态规划是最有效的。
所以动态规划中每一个状态一定是由上一个状态推导出来的
如何用动态规划来解题呢
1.确定dp数组(dp table)以及下标的含义
2.确定递推公式
3.dp数组如何初始化
4.确定遍历顺序
5.举例推导dp数组
小编还是遵循以往的风格,直接从简单的题目入手,带大家分析动态规划,本篇题目较为基础
题型训练
爬楼梯
力扣题目链接
题目
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
分析
首先我们先试着推理几个
从第一个台阶到第二个台阶-------2种
从第一个台阶到第三个台阶-------3种
从第一个台阶到第四个台阶-------5种
从第一个台阶到第五个台阶-------8种
细心的你有没有发现什么呢?有没有联想到斐波那契呢?那我们又如何用动态规划来实现
使用我们的五步骤
1.dp[i]—用来表示我爬到第i个台阶所用了dp[i]中方案
2.根据我们的规律,我们可以推导出dp[i]=dp[i-1]+dp[i-2]
3.初始化,dp[1]=1,dp[2]=2;
好啦,现在就让我们一起用代码遍历一遍吧
代码实现
class Solution {
public:
int climbStairs(int n) {
if (n <= 1) return n; //防止指针溢出
vector<int> dp(n+1);
dp[1]=1;
dp[2]=2;
for(int i=3;i<=n;i++)
{
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
既然我们都爬一回楼梯了,何不访爬第二回
使用最小花费爬楼梯
力扣题目链接
题目
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
-支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15
分析
题目告诉我们总共有两种爬法,那我们爬一个还是爬两个呢? 当然是选择在爬到某一台阶时,花费少的。
例如
1.dp[i]–表示在爬到第i个台阶时最低花费
2.dp[i]=min(cost[i-1]+dp[i-1],cost[i-2]+dp[i-2];
3.初始化,dp[0]=0,dp[1]=0;
代码实现
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size() + 1);
dp[0] = 0;
dp[1] = 0;
for (int i = 2; i <= cost.size(); i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.size()];
}
};
不同路径
力扣题目链接
题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1.向右 -> 向下 -> 向下
2.向下 -> 向下 -> 向右
3.向下 -> 向右 -> 向下
分析
我们画图分析一下
仔细观察,我们发现到达某位置的路径总数,是该位置上方和左方位置路径总数之和。由此,我们开始定义
1.dp[i][j]表示到(i,j)位置的路径总数为dp[i][j]
2.dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
3.初始化:第一行与第一列肯定都只有一条路可以走,所以都初始化为1;
dp[i][0]=1,dp[0][j]=1;
代码实现
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n, 0));
for(int i=0;i<n;i++) dp[0][i]=1;//
for(int i=0;i<m;i++) dp[i][0]=1;//
for(int i=1;i<m;i++)
{
for(int j=1;j<n;j++)
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
return dp[m-1][n-1];
}
};
本期就到这里啦!!拜拜!!!