GEFCom 2014电力能源预测数据集

感兴趣的同学可以CSDN查看个人简介,获取相关数据集噢。GEFCom 2014 Dtaset,GEFCom 2014的主题是电力系统概率性预测,共分为负荷预测、电价预测、风电预测以及光伏预测4个子竞赛单元,因此GEFCom 2014 Dataset由GEFCom2014-Load、GEFCom2014-Price、GEFCom2014-Wind和GEFCom2014-Solar这4个子数据集组成。

回顾GEFCom2012,其中一个成功因素是互动比赛平台,参赛者可以在这里相互交流其他以及与比赛组织者。赛事方决定以在构建GEFCom2014时保持这一关键功能。同时,升级了三个新的功能:

1、概率预测主题,以更好地捕捉现代电网中的不确定性;

2、4大赛道,电力负荷预测(GEFCom2014-Load),电价(GEFCom2014-Price),以及风能(GEFCom2014-Wind)和太阳能(GEFCom2014-Solar)功率;

3、滚动预测,每周发布未来15周增量预报数据,模仿真实世界预测过程。

Load Forecasting

GEFCom2014-Load的目的是在滚动的基础上预测美国公用事业的小时级别负荷分位数,预测期为一个月。数据集提供了公用事业的每小时历史负荷和天气数据。除了比赛提供的数据外,还被允许使用美国联邦假日信息。

第一份数据包括69个月的小时负荷数据(2005年1月至2010年9月)和117个月的每小时天气数据(2001年1月到2010年9月份)。第二次数据发布开始,每周向参赛者提供一个月的小时负荷和天气数据,作为前一周的解决方案。负荷预测赛道共涉及11年的天气数据和5年的负荷数据。

Price Forecasting

GEFCom2014-Price的目的是在滚动的基础上预测一个地区的电价概率分布(分位数)。预测期为24小时,提供了每小时的数据,包括边际价格、区域负荷预测和系统负荷预测。

发布的第一份数据包括大约2.5年的小时价格、区域和系统负荷预测数据(从2011年1月1日到2013年6月15日),以及第二天(2013年6日16日)的区域和系统负载预测,参赛者被要求预测价格。与其他三条赛道不同的是,每项任务的预测起点都向前移动,价格预测赛道的设置是为了让参赛者使用每个预测期之前的历史数据预测接下来的几天。总的来说,价格预测轨迹涉及大约三年的位置边际价格、区域和系统负荷预测数据(2011年1月1日至2013年12月17日)。

Wind Forecasting

GEFCom2014-Wind的目标是预测10个区域的风力发电24小时,这是滚动的10个区域,对应于澳大利亚的10个风电场。在GEFCom2014期间,这10个风电场的位置未披露。每天午夜每天都会发布新的预测。由于每个任务的预测期限为一个月,因此这15个任务中的每项都需要为每个区域发布28-31 24小时的预测。预测应以99个分位数的形式表达,其标称比例在0到1之间。

预测因素包括从欧洲中型天气预报(ECMWF)获得的两个高度,10和100 m的风预测。这些预测是针对区域和风矢量分量(表示U和V),即分别在西方和南北轴上的风矢量的投影。根据这些风电场的确切位置提供了预测,每天午夜每天发布,提前24小时每小时的预报分辨率。天气预报可用于训练,也可以作为用于预测评估的各种任务的输入。此外,数据还提供了一个小时分辨率的各个风电场的发电量实测,但数据仅包含训练期间。

Solar Forecasting

 GEFCOM2014中的概率太阳能预测赛道与上述的风能预测赛道非常相似。在GEFCOM2014期间,这些太阳能发电厂的确切位置未披露。预测将在每天午夜发布。由于每个任务的预测期为一个月,因此为这15个任务中的每一个都发布了28-31个预测系列。预测应以99个分位数的形式表达,其名义比例在0和1之间。

可用的数据包括从欧洲中型天气预报中心(ECMWF)获得的12个天气变量的天气预报,可以根据所有这些变量自由执行变量选择,并/或生成和选择新功能。对太阳能发电厂的确切位置进行预测,并在午夜每天发布预测结果,24小时每小时的预测分辨率。天气预报也可用于模型训练,也可以作为预测的输入,仍然提供了一个小时分辨率的各个太阳能电厂的发电量实测,但数据仅包含训练期间。

### GEFCom2014 数据集概述 GEFCom2014 是全球能源预测竞赛的一部分,专注于概率负荷预测。该比赛引入了适当的评估指标来衡量概率负荷预测的表现,标志着这一领域的一个重要里程碑[^3]。 ### 数据集下载指南 对于 GEFCom2014数据集,通常可以通过官方竞赛网站或相关学术论文中的链接获得访问权限。具体来说: - **官方网站**: 访问 Kaggle 或其他指定平台上的竞赛页面。 - **注册账号**: 创建账户并同意参赛条款。 - **下载文件**: 登录后,在数据标签页找到可供下载的数据包。 请注意,某些资源可能仅限于竞赛参与者或需经过申请流程才能获取。 ### 数据集使用说明 为了有效利用 GEFCom2014 数据集,建议遵循以下步骤处理和分析数据: #### 加载数据 ```python import pandas as pd df = pd.read_csv('path_to_file.csv') print(df.head()) ``` #### 可视化时间序列 可视化是理解电力负荷模式的关键工具。可以使用如下函数绘制时间序列图: ```python def plot_gefcom2012_electricity_load_data(df): plot_time_series(df, 'timestamp', 'load', 'GEFCom2012 Electricity Load Data', 'Electricity Load') # 函数定义来自先前的例子 [^1] plot_gefcom2012_electricity_load_data(df) ``` ### 特征介绍 GEFCom2014 数据集中包含了多个有助于建立精确模型的特征变量: - `timestamp`: 时间戳记录每小时的时间点。 - `load`: 实际测量得到的电力需求量。 - `temperature`: 温度读数作为外部环境条件的影响因子。 - `holiday`: 是否为节假日标志位。 - `day_of_week`: 星期几的信息用于捕捉周内效应。 - `hour_of_day`: 小时级别信息帮助识别日内变化趋势。 通过上述特征组合,能够更全面地描述电力系统的运行状态及其随时间和外界因素的变化规律。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值