文章目录
表达式求值(通过类实现)基本原理
这里主要通过链式栈进行操作。表达式求值的原理在于将一段复杂的中缀运算转变为前缀表达式、后缀表达式,通过传入的计算序列,创建运算符栈和数值栈,进行运算,通过栈的规则,不断进行以下步骤(以后缀表达式为例):数字入数字栈,运算符入运算符栈,如果符号优先级比已经在栈中的符号优先级高,先进行计算,如果等于或低于前者,从数字栈取出两个数字,符号栈取出前面那个运算符进行运算,结果存放到数字栈中。其难点在于如何比较优先级,如何让处理括号问题。
4.3 表达式求值(类实现)
在后面,或许会利用类的结合特性,给出更好的表达式求值方法,目前阶段主要是进行逻辑思维运算
4.3.1 NodeSatck.h
简单写一个链栈即可
#pragma once
#include<iostream>
typedef int Data;
struct Node {
Data data;
Node* next;
};
class NodeSatck {
public:
NodeSatck();
~NodeSatck();
void init();
void push(Data data);
Data pop();
void destory();
int len();
Data read();
void clear();
private:
int length;
Node* top;
Node* base;
};
4.3.2 NodeSatck.cpp
链栈的简单实现,与上一篇博客内容相似
#include"NodeSatck.h"
NodeSatck::NodeSatck() {
init();
}
NodeSatck::~NodeSatck() {
destory();
}
void NodeSatck::init() {
top = new Node;
base = new Node;
top->next = base;
base->next = nullptr;
length = 0;
}
void NodeSatck::push(Data data) {
Node* fresh = new Node;
fresh->data = data;
fresh->next = top->next;
top->next = fresh;
length++;
}
Data NodeSatck::pop() {
Node* del = top->next;
top->next = del->next;
Data data = del->data;
length--;
delete del;
return data;
}
void NodeSatck::destory() {
length = 0;
Node* move = top;
Node* del;
while (move) {
del = move;
move = move->next;
delete del;
}
}
int NodeSatck::len() {
return length;
}
Data NodeSatck::read() {
if (length == 0) exit(22);
else {
return top->next->data;
}
}
void NodeSatck::clear() {
Node* move = top->next;
Node* tmp = nullptr;
while (move->next != nullptr) {
tmp = move;
move = move->next;
delete tmp;
length--;
}
top->next = base;
}
4.3.3 main.cpp
#include"NodeSatck.h"
using namespace std;
#pragma warning(disable:4996)
float operate(float f, Data opt, float t);
char pre(char a, char b);
int isOperator(char c);
void Optpush();
NodeSatck Op = {};
NodeSatck Val = {};
NodeSatck bExpress = {};
NodeSatck Express = {};
char optr[7] = { '+','-','x','/','(',')','#' };
char prior[7][7] = {
//+ - x / ( ) # 操作符/栈中
{'o','o','i','i','i','o','o'},// +
{'o','o','i','i','i','o','o'},// -
{'o','o','o','o','i','o','o'},// x
{'o','o','o','o','i','o','o'},// /
{'i','i','i','i','i','e','n'},// (
{'i','i','i','i','e','i','i'},// )
{'i','i','i','i','i','n','e'} // #
};
int main() {
Op.push('#');
//表达式入队列,以两个栈形式完成
string str;
cin>>str;
int length = str.length();
for (int i = 0; i < length; i++) {
bExpress.push(str.c_str()[i]);
cout << bExpress.read() << ' ' << endl;
cout << i+1<<endl;
}
cout << "len:" << bExpress.len() << endl;
while(bExpress.len()){
Express.push(bExpress.pop());
cout << Express.read() << ' ' << endl;
}
//表达式入栈操作
int tmp = 0;
while (Express.len()!=0) {
//数字入栈,由于读取的是字符,所以还要处理为数字
Data ret = (Data)Express.read();
ret -= '0';
if (ret >= 0 && ret <= 9) {
tmp = tmp * 10 + ret ;
std::cout << "read: "<< ret << std::endl;
Express.pop();
}
else{ //遇到操作符
if (tmp != 0) {
Val.push(tmp); //先将数字传入数字栈
std::cout << "val push: " << tmp << std::endl;
}
tmp = 0;
//符号入栈,并进行操作
Op.push(Express.pop());
Optpush();
}
}
cout << Op.len() << endl;
std::cout<<Val.pop();
}
float operate(float f, Data opt, float t) {
cout << "calculating" << endl;
switch (opt) {
case '+':return f + t; break;
case '-':return f - t; break;
case 'x':return f * t; break;
case '/':return f / t; break;
default:exit(-1);
}
}
//栈中符号,即将入栈符号
char pre(char a, char b) {
int i = 0; int j = 0;
while (optr[i] != a) i++;
while (optr[j] != b) j++;
cout << prior[i][j] << endl;
return prior[i][j];
}
//判断是否是合法操作符
int isOperator(char c) {
for (int i = 0; i < 7; i++)
if (c == optr[i]) {
return 1;
}
return 0;
}
void Optpush() {
Data a;
Data ret;
if (isOperator(Op.read())) { //如果是符号
cout << "is operator!" << endl;
Data tmp = Op.pop(); //传出运算符
switch (pre(Op.read(), tmp)) { //和前一个运算符比较得到优先级
case 'i': //如果后一个运算符优先级高
Op.push(tmp);
break;
case 'e':
Op.pop();
cout << "equal" << endl;
break;
case 'o':
a = Val.pop();
ret = (Data)operate(Val.pop(), Op.pop(), a);
cout << ret << endl;
Val.push(ret);
Op.push(tmp);
cout << "new operator" << endl;
if (tmp == ')' || tmp == '#') {
Optpush();
}
break;
case 'n':exit(1);
}
}
else exit(2);
}
4.3.4 程序运行结果(注释掉一些过程输出后)
4.4共享栈(单文件实现)
一个数组,但是由自下而上生长的栈和自上而下生长的栈组成
4.4.1 main.cpp
#include<stdio.h>
#include<malloc.h>
#include<stdlib.h>
#define MAX_DEF_CAPACITY 20
typedef int Data;
typedef struct _CoStack {
Data* base;
Data* top1;
Data* top2;
}CoStack,*pCostack;
void coInit(CoStack* cos);
void coPush(CoStack* cos, int i, Data add);
Data coPop(CoStack* cos, int i);
Data coRead(CoStack cos, int i);
int* getLen(CoStack);
void coDes(CoStack* cos);
int main() {
CoStack cos;
coInit(&cos);
for (int i = 0; i < 11; i++) {
coPush(&cos, 1, i);
coPush(&cos, 2, i);
}
int* ret = getLen(cos);
printf("maxlen:%d curlen1:%d curlen2:%d remain:%d\n",ret[0],ret[1],ret[2],ret[3]);
for (int i = 0; i < 11; i++) {
printf("1 pop: %d ", coPop(&cos, 1));
printf("2 pop: %d\n", coPop(&cos, 2));
}
}
void coInit(CoStack* cos){
cos->base = (Data*)malloc(MAX_DEF_CAPACITY * sizeof(Data));
cos->top1 = &cos->base[0];
cos->top2 = &cos->base[MAX_DEF_CAPACITY - 1];
}
void coPush(CoStack* cos, int i, Data add) {
if (cos->top1-1 == cos->top2) { printf("Full! Invalid push!\n"); return; }
if (i == 1) {
cos->top1[0] = add;
printf("1 push %d ",add);
if (++cos->top1 == cos->top2 + 1) printf("Now I'am full!\n");
}
else if (i == 2) {
cos->top2[0] = add;
printf("2 push %d\n", add);
if (--cos->top2 == cos->top1 - 1) printf("Now I’m full!\n");
}
else exit(-1);
}
Data coPop(CoStack* cos, int i) {
if (i == 1&& cos->top1!=&cos->base[0]) {
cos->top1--;
return cos->top1[0];
}
else if (i == 2&&cos->top2!=&cos->base[MAX_DEF_CAPACITY-1]) {
cos->top2++;
return cos->top2[0];
}
else {
printf("Invalid pop!\n");
exit(-3);
}
}
Data coRead(CoStack cos, int i) {
if (i == 1)return cos.top1[-1];
else if (i == 2)return cos.top2[1];
else {
exit(-3);
return 0;
}
}
int* getLen(CoStack cos) {
int ret[4] = {};
ret[0] = MAX_DEF_CAPACITY; //最大容量
ret[1] = cos.top1 - cos.base; //1的容量
ret[2] = &cos.base[MAX_DEF_CAPACITY-1] - cos.top2; //2的容量
ret[3] = cos.top2 - cos.top1 + 1; //剩余容量
return ret;
}
void coDes(CoStack* cos) {
free(cos->base);
}
4.4.2 当最大容量为20时,效果如下:
4.5双端队列
4.5.1 DQueue.h:
#pragma once
#include<stdio.h>
#include<malloc.h>
#include<stdlib.h>
typedef int Data;
typedef struct _SqStack {
Data* data;
int curlen;
}SqStack;
// 我们可以用栈来实现双端队列:
//基础思想:正向入栈和反向出栈可以看作一个队列,
// 反向入栈和正向出栈又可以看作一个队列。
// 将栈顶看作队头,我们写出如下代码:
typedef struct _SqStack DQueue, * pDQueue;
void fftt(pDQueue dq);//翻转dq
void push_front(DQueue* dq, Data add);
Data pop_front(DQueue* dq);
void push_back(DQueue* dq, Data add);
Data pop_back(DQueue* dq);
//栈操作
void initStack(SqStack* stack);
void push(SqStack* stack, Data data);
Data pop(SqStack* stack);
Data getLast(SqStack stack);
Data getFirst(SqStack stack);
int getLength(SqStack stack);
int isEmpty(SqStack stack);
void clearStack(SqStack* stack);
void destoryStack(SqStack* stack);
4.5.2 DQueue.cpp
void fftt(pDQueue dq){
Data* fresh = (Data*)malloc(getLength(*dq) * sizeof(Data));
for (int i = 0; i < dq->curlen; i++) {
fresh[dq->curlen - 1 - i] = dq->data[i];
}
free(dq->data);
dq->data= fresh;
}
void push_front(DQueue* dq, Data add){
push(dq, add);
}
Data pop_front(DQueue* dq){
return pop(dq);
}
void push_back(DQueue* dq, Data add){
fftt(dq);
push(dq, add);
fftt(dq);
}
Data pop_back(DQueue* dq){
fftt(dq);
Data del = pop(dq);
fftt(dq);
return del;
}
void initStack(SqStack* stack) {
stack->data = NULL;
stack->curlen = 0;
}
void push(SqStack* stack, Data data) {
Data* fresh = (Data*)malloc((stack->curlen + 1) * sizeof(Data));
for (int i = 0; i < stack->curlen; i++) fresh[i] = stack->data[i];
stack->data = fresh;
stack->data[stack->curlen] = data;
stack->curlen++;
}
Data pop(SqStack* stack)
{
Data ret;
if (--stack->curlen >= 0) {
ret = stack->data[stack->curlen];
}
else(exit(-1));
return ret;
}
Data getLast(SqStack stack)
{
if (stack.curlen > 0)
return stack.data[stack.curlen - 1];
else exit(0);
}
Data getFirst(SqStack stack){
return stack.data[0];
}
int getLength(SqStack stack)
{
return stack.curlen;
}
int isEmpty(SqStack stack)
{
return stack.curlen == 0;
}
void clearStack(SqStack* stack) {
stack->curlen = 0;
}
void destoryStack(SqStack* stack) {
stack->curlen = 0;
free(stack->data);
}
4.5.3 main.cpp
#include"DQueue.h"
int main() {
DQueue dq = { };
initStack(&dq);
printf("前方入队列:\n");
for (int i = 0; i < 15; i++) {
push_front(&dq, i); printf("%d ", getLast(dq));
}
printf("\n后方入队列:\n");
for (int i = 7; i < 17; i++) {
push_back(&dq, i); printf("%d ", getFirst(dq));
}
printf("\n队列元素:\n");
for (int i = 0; i < getLength(dq); i++)printf("%d ", dq.data[i]);
printf("\n后方出队列\n");
for (int i = 0; i < 9; i++) {
printf("%d ", pop_back(&dq));
}
printf("\n前方出队列\n");
for (int i = 0; i < 9; i++) {
printf("%d ", pop_front(&dq));
}
}