000011 最大食物链计数(拓扑排序)
拓扑排序结合动态规划
首先我们回忆一下拓扑排序,见图的三种遍历算法
题目描述
最大食物链计数(拓扑排序)
最大食物链计数
题目背景
你知道食物链吗?Delia 生物考试的时候,数食物链条数的题目全都错了,因为她总是重复数了几条或漏掉了几条。于是她来就来求助你,然而你也不会啊!写一个程序来帮帮她吧。
题目描述
给你一个食物网,你要求出这个食物网中最大食物链的数量。
(这里的“最大食物链”,指的是生物学意义上的食物链,即最左端是不会捕食其他生物的生产者,最右端是不会被其他生物捕食的消费者。)
也就是说,你需要去找到所有从没有入边的节点到没有出边的节点的路径数量。
Delia 非常急,所以你只有 1 秒的时间。
由于这个结果可能过大,你只需要输出总数模上 80112002 的结果。
输入格式
第一行,两个正整数 n、m,表示生物种类 n 和吃与被吃的关系数 m。
接下来 m 行,每行两个正整数,表示被吃的生物A和吃A的生物B。
输出格式
一行一个整数,为最大食物链数量模上 80112002 的结果。
样例 #1
样例输入 #1
5 7
1 2
1 3
2 3
3 5
2 5
4 5
3 4
样例输出 #1
5
提示
n小于等于5000
m小于等于500000
数据中不会出现环,满足生物学的要求。
题目分析
首先我们拿出我们的 基于入度的拓扑排序框架(这个框架只输出 一种拓扑排序的顺序 或者 有环排序失败的信息)
拓扑排序框架:
void topoSortAndCountPaths()
{
queue<int> q;
vector<int> result; // 储存排序得到的数据
// 1. 将所有入度为 0 的节点入队
for (int i = 1; i <= n; i++)
{
if (indegree[i] == 0)
{
q.push(i);
}
}
vector<int> ind = indegree;//不改变原入度数组
while (!q.empty())
{
int u = q.front();
q.pop();
result.push_back(u);
// 遍历 u 的所有邻接节点 v
for (int v : adj[u])
{
// 如果 v 的入度减为 0,则加入队列
if (ind[v] == 0)
{
q.push(v);
}
}
}
// 如果最后拓扑排序中的节点数小于图中的节点数,则图中存在环。
if (result.size() != n)
{
cout << "has cycle\n";

最低0.47元/天 解锁文章
457

被折叠的 条评论
为什么被折叠?



