000011 最大食物链计数(拓扑排序)————统计所有的符合条件的路径的数量

000011 最大食物链计数(拓扑排序)

拓扑排序结合动态规划

首先我们回忆一下拓扑排序,见图的三种遍历算法

题目描述


最大食物链计数(拓扑排序)

最大食物链计数
题目背景
你知道食物链吗?Delia 生物考试的时候,数食物链条数的题目全都错了,因为她总是重复数了几条或漏掉了几条。于是她来就来求助你,然而你也不会啊!写一个程序来帮帮她吧。

题目描述
给你一个食物网,你要求出这个食物网中最大食物链的数量。

(这里的“最大食物链”,指的是生物学意义上的食物链,即最左端是不会捕食其他生物的生产者,最右端是不会被其他生物捕食的消费者。)
也就是说,你需要去找到所有从没有入边的节点到没有出边的节点的路径数量。

Delia 非常急,所以你只有 1 秒的时间。

由于这个结果可能过大,你只需要输出总数模上 80112002 的结果。

输入格式
第一行,两个正整数 n、m,表示生物种类 n 和吃与被吃的关系数 m。

接下来 m 行,每行两个正整数,表示被吃的生物A和吃A的生物B。

输出格式
一行一个整数,为最大食物链数量模上 80112002 的结果。

样例 #1
样例输入 #1
5 7
1 2
1 3
2 3
3 5
2 5
4 5
3 4
​
样例输出 #1
5
​
提示
n小于等于5000
m小于等于500000

数据中不会出现环,满足生物学的要求。



题目分析

首先我们拿出我们的 基于入度的拓扑排序框架(这个框架只输出 一种拓扑排序的顺序 或者 有环排序失败的信息)

拓扑排序框架:

void topoSortAndCountPaths()
{
   
   
  queue<int> q;
  vector<int> result; // 储存排序得到的数据

  // 1. 将所有入度为 0 的节点入队
  for (int i = 1; i <= n; i++)
  {
   
   
    if (indegree[i] == 0)
    {
   
   
      q.push(i);
    }
  }

  vector<int> ind = indegree;//不改变原入度数组

  while (!q.empty())
  {
   
   
    int u = q.front();
    q.pop();
    result.push_back(u);

    // 遍历 u 的所有邻接节点 v
    for (int v : adj[u])
    {
   
   
      // 如果 v 的入度减为 0,则加入队列
      if (ind[v] == 0)
      {
   
   
        q.push(v);
      }
    }
  }

  // 如果最后拓扑排序中的节点数小于图中的节点数,则图中存在环。
  if (result.size() != n)
  {
   
   
    cout << "has cycle\n";
    
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值