networkx 有向图强连通_PGM学习之六 从有向无环图(DAG)到贝叶斯网络(Bayesian Networks)...

本文探讨了在学习贝叶斯网络过程中的基本概念,包括有向无环图(DAG)、概率分布、独立性、条件独立性、马尔科夫假设和I-Maps。特别强调了有向图中的d-Separation和最小I-Maps在建立概率模型中的作用,以及它们如何简化概率分布的表示。
摘要由CSDN通过智能技术生成

本文的目的是记录一些在学习贝叶斯网络(Bayesian Networks)过程中遇到的基本问题。主要包括有向无环图(DAG),I-Maps,分解(Factorization),有向分割(d-Separation),最小I-Maps(Minimal I-Maps)等。主要参考Nir Friedman的相关PPT。

1  概率分布(Probability Distributions)

令X1,...,Xn表示随机变量;令P是X1,...,Xn的联合分布(joint distribution)。如果每个变量均可有两种取值(0-1分布),那么最终我们将得到2^n种取值,也就是说,我们需要用2^n个变量来描述P的分布。

2 随机变量的独立性

如果随机变量X和Y相互独立(independent),那么:

1)P(X=x|Y=y)=p(X=x),对于所有的x和y均成立;2)也就是说,随机变量Y的取值(或者说随机事件Y是否发生),不影响X。

3)P(X,Y)=P(X|Y)*P(Y)=P(X)*P(Y);

推广,如果X1,。。。,Xn独立,那么:

P(X1,,,,,Xn)=P(X1)...P(Xn),共需O(n)个参数。

3 条件独立(Conditional Independence)

上述独立的情况比较理想,不幸的是,现实中大多数我们感兴趣的随机变量都不是相互独立的。更加常见的假设是条件独立。两个随机变量X和Y对于给定条件Z条件独立,如果:

P(X=x|Y=y,Z=z) = P(X=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值