一 454四数相加II
将四个数分成两组,将暴力解的四重循环变为两个二重循环,有效减少了时间复杂度,使用unorder_map,key值放a+b的值 ,value 放该值的数量
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
unordered_map<int, int> map1;//key放a+b的值 value 放该值的数量
for(int a : nums1){
for(int b : nums2){
map1[a + b]++;
}
}
int count = 0;
for(int c : nums3){
for(int d : nums4){
if(map1.find(-c-d) != map1.end()){
count += map1[-c-d];
}
}
}
return count;
}
};
二 383赎金信
本题当然可以使用map,但使用map的空间消耗要比数组大,而且map要维护红黑树或者哈希表,还要做哈希函数,更加费时!数据量大时更能体现出map的优越性。 本题哈希表中的字母只需要26个小写英文字母,数组更加简单直接有效!
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
int hash[26] = {0};
for(int i = 0; i < magazine.length(); i++){
hash[magazine[i] - 'a'] ++;
}
for(int j = 0 ; j < ransomNote.length(); j++){
hash[ransomNote[j] - 'a']--;
}
for(int k = 0; k < 26; k++){
if(hash[k] < 0)
return false;
}
return true;
}
};
三 15 三数之和
本题采用哈希解法时的去重非常麻烦且费时,因此采用将暴力解的三重循环改为遍历+双指针的解法。本题的去重非常类似于回溯算法中的树层去重,要清楚是不能有重复的三元组,但三元组中的元素可以重复
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
//排序遍历+双指针
vector<vector<int>> result;
sort(nums.begin(),nums.end());
for(int i = 0; i < nums.size(); i++){
if(nums[i] > 0)
continue;
if(i>=1&&nums[i] == nums[i - 1])
continue;
int left = i + 1;
int right = nums.size() - 1;
while(right > left){
if (nums[i] + nums[left] + nums[right] > 0)
right--;
else if (nums[i] + nums[left] + nums[right] < 0)
left++;
else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 找到一个三元组之后,要对左指针和右指针去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
right--;
left++;
}
}
}
return result;
}
};
四 18 四数之和
区别于454四数相加II,本题的四个数在同一个数组中取得,因此会更难,在原理上更接近15 三数之和,多了一重循环以及该层循环对应的去重。
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 剪枝处理,nums[k]是负数的话,不需要跳过
if (nums[k] > target && nums[k] >= 0) {
break;
}
// 对nums[k]去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
//第二个数字
for (int i = k + 1; i < nums.size(); i++) {
// 同上,剪枝处理
if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
// 同上,对nums[i]去重
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
} else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 对nums[left]和nums[right]去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
right--;
left++;
}
}
}
}
return result;
}
};
五 总结
- 三数之和、四数之和的去重非常类似于回溯算法中的树层去重,要对原理了解透彻
- 先搭建好算法的框架,再进行剪枝优化
- 三数之和、四数之和也是双指针的典型应用,可以将暴力解中要用两重循环解决的事情变成一重循环来解决