代码随想录第七天 454四数相加II 383赎金信 15 三数之和 18 四数之和

一 454四数相加II

将四个数分成两组,将暴力解的四重循环变为两个二重循环,有效减少了时间复杂度,使用unorder_map,key值放a+b的值 ,value 放该值的数量

class Solution {
public:
    int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
        unordered_map<int, int> map1;//key放a+b的值 value 放该值的数量
        for(int a : nums1){
            for(int b : nums2){
                 map1[a + b]++;
            }
        }
        int count = 0;
        for(int c : nums3){
            for(int d : nums4){
                if(map1.find(-c-d) != map1.end()){
                    count += map1[-c-d];
                }
            }
        }
        return count;
    }
};

二 383赎金信

本题当然可以使用map,但使用map的空间消耗要比数组大,而且map要维护红黑树或者哈希表,还要做哈希函数,更加费时!数据量大时更能体现出map的优越性。 本题哈希表中的字母只需要26个小写英文字母,数组更加简单直接有效!

class Solution {
public:
    bool canConstruct(string ransomNote, string magazine) {
        int hash[26] = {0};
        for(int i = 0; i < magazine.length(); i++){
            hash[magazine[i] - 'a'] ++;
        }
        for(int j = 0 ; j < ransomNote.length(); j++){
            hash[ransomNote[j] - 'a']--;
        }
        for(int k = 0; k < 26; k++){
            if(hash[k] < 0)
                return false;
        }
        return true;
    }
};

三 15 三数之和

本题采用哈希解法时的去重非常麻烦且费时,因此采用将暴力解的三重循环改为遍历+双指针的解法。本题的去重非常类似于回溯算法中的树层去重,要清楚是不能有重复的三元组,但三元组中的元素可以重复

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        //排序遍历+双指针
        vector<vector<int>> result;
        sort(nums.begin(),nums.end());
        for(int i = 0; i < nums.size(); i++){
            if(nums[i] > 0)
                continue;
            if(i>=1&&nums[i] == nums[i - 1])
                continue;
            int left = i + 1;
            int right = nums.size() - 1;
            while(right > left){
                if (nums[i] + nums[left] + nums[right] > 0) 
                    right--;
                else if (nums[i] + nums[left] + nums[right] < 0) 
                    left++;
                else {
                    result.push_back(vector<int>{nums[i], nums[left], nums[right]});
                    // 找到一个三元组之后,要对左指针和右指针去重
                    while (right > left && nums[right] == nums[right - 1]) right--;
                    while (right > left && nums[left] == nums[left + 1]) left++;

                    right--;
                    left++;
                }
            }
        }
        return result;
        
    }
};

四 18 四数之和

区别于454四数相加II,本题的四个数在同一个数组中取得,因此会更难,在原理上更接近15 三数之和,多了一重循环以及该层循环对应的去重。

class Solution {
public:
    vector<vector<int>> fourSum(vector<int>& nums, int target) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        for (int k = 0; k < nums.size(); k++) {
            // 剪枝处理,nums[k]是负数的话,不需要跳过
            if (nums[k] > target && nums[k] >= 0) {
            	break; 
            }
            // 对nums[k]去重
            if (k > 0 && nums[k] == nums[k - 1]) {
                continue;
            }
            //第二个数字
            for (int i = k + 1; i < nums.size(); i++) {
                // 同上,剪枝处理
                if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
                    break;
                }

                // 同上,对nums[i]去重
                if (i > k + 1 && nums[i] == nums[i - 1]) {
                    continue;
                }
                int left = i + 1;
                int right = nums.size() - 1;
                while (right > left) {
                  
                    if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
                        right--;
                    } else if ((long) nums[k] + nums[i] + nums[left] + nums[right]  < target) {
                        left++;
                    } else {
                        result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
                        // 对nums[left]和nums[right]去重
                        while (right > left && nums[right] == nums[right - 1]) right--;
                        while (right > left && nums[left] == nums[left + 1]) left++;

                    
                        right--;
                        left++;
                    }
                }

            }
        }
        return result;
    }
};

五 总结

  1. 三数之和、四数之和的去重非常类似于回溯算法中的树层去重,要对原理了解透彻
  2. 先搭建好算法的框架,再进行剪枝优化
  3. 三数之和、四数之和也是双指针的典型应用,可以将暴力解中要用两重循环解决的事情变成一重循环来解决
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值