一、问题导入
我们有一份统计数据,这个数据是关于手机号消耗流量的情况,需求统计每一个手机号耗费的总上行流量、总下行流量、总流量。
二、授新
(一)任务介绍
我们现在有一个目录data下保持了一些日志文件,文件的内容格式如下
需求统计每一个手机号耗费的总上行流量、总下行流量、总流量
(二)任务分析
在map阶段,我们读入每一行数据,通过空格分割,切分字段,抽取手机号,上行流量和下行流量。
在reduce阶段,我们把相同手机号的数据进行求和汇总。
但是,这里有一个问题:map和reduce这两个函数都是通过key,value的方式来进行数据交互的,这里的key可以设置为手机号,而value值就比较复杂,它有两个信息:上行流量和下行流量要统计。所以我们可以封装一个类的对象来保存它们。而这就必然引出一个新的问题:因为key,value是需要进行磁盘的读写的,所以它们必须要能序列化,如果我们创建一个新的类来描述流量数据,就必须也实现序列化。
通过上面的分析,我们总结出基本步骤是:
封装一个FlowBean类,保存手机号,上行流量,下行流量,并实现序列化。
在map方法中切割数据,拆分出手机号,上行流量,下行流量,并实例化FlowBean对象。
在reduce方法中对数据进行汇总。
编写流量统计的Bean对象
通过上面的分析,我们总结出基本步骤是
package com.root.mapreduce.writable;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
//1 继承Writable接口
public class FlowBean implements Writable {
private long upFlow; //上行流量
private long downFlow; //下行流量
//2 提供无参构造
public FlowBean() {
}
//3 提供参数的getter和setter方法
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
//4 实现序列化和反序列化方法,注意顺序一定要保持一致
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
this.upFlow = dataInput.readLong();
this.downFlow = dataInput.readLong();
}
}
Mapper类
通过上面的分析,我们总结出基本步骤是。
package com.root.mapreduce.writable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1 获取一行数据,转成字符串
String line = value.toString();
//2 切割数据
String[] split = line.split("\t");
//3 抓取我们需要的数据:手机号,上行流量,下行流量
String phone = split[0];
Long up = Long.parseLong(split[split.length - 1]);
Long down = Long.parseLong(split[split.length - 2]);
//4 封装对象
FlowBean flowBean = new FlowBean(up, down);
//5 写出outK outV
context.write(phone, flowBean);
}
}
编写Reducer类
package com.root.mapreduce.writable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReducer extends Reducer<Text, FlowBean, Text, Text> {
private FlowBean outV = new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
long totalUp = 0;
long totalDown = 0;
//1 遍历values,将其中的上行流量,下行流量分别累加
for (FlowBean flowBean : values) {
totalUp += flowBean.getUpFlow();
totalDown += flowBean.getDownFlow();
}
//2 计算总流量
String flowDesc = String.format("总上行流量: %d,总下行流量:%d,总流量:%d\n", totalUp, totalDown, (totalUp+totalDown))
//3 写出outK outV
context.write(key,flowDesc);
}
}
编写Driver驱动类
package com.root.mapreduce.writable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FlowDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1 获取job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2 关联本Driver类
job.setJarByClass(FlowDriver.class);
//3 关联Mapper和Reducer
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReducer.class);
//4 设置Map端输出KV类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
//5 设置程序最终输出的KV类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//6 设置程序的输入输出路径
FileInputFormat.setInputPaths(job, new Path("D:\\inputflow"));
FileOutputFormat.setOutputPath(job, new Path("D:\\flowoutput"));
//7 提交Job
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}