一分钟教你学会流量统计

一、问题导入
我们有一份统计数据,这个数据是关于手机号消耗流量的情况,需求统计每一个手机号耗费的总上行流量、总下行流量、总流量。

二、授新
(一)任务介绍

我们现在有一个目录data下保持了一些日志文件,文件的内容格式如下

需求统计每一个手机号耗费的总上行流量、总下行流量、总流量

(二)任务分析

在map阶段,我们读入每一行数据,通过空格分割,切分字段,抽取手机号,上行流量和下行流量。

在reduce阶段,我们把相同手机号的数据进行求和汇总。

但是,这里有一个问题:map和reduce这两个函数都是通过key,value的方式来进行数据交互的,这里的key可以设置为手机号,而value值就比较复杂,它有两个信息:上行流量和下行流量要统计。所以我们可以封装一个类的对象来保存它们。而这就必然引出一个新的问题:因为key,value是需要进行磁盘的读写的,所以它们必须要能序列化,如果我们创建一个新的类来描述流量数据,就必须也实现序列化。

通过上面的分析,我们总结出基本步骤是:

封装一个FlowBean类,保存手机号,上行流量,下行流量,并实现序列化。
在map方法中切割数据,拆分出手机号,上行流量,下行流量,并实例化FlowBean对象。
在reduce方法中对数据进行汇总。
编写流量统计的Bean对象
通过上面的分析,我们总结出基本步骤是

package com.root.mapreduce.writable;
 
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
 
//1 继承Writable接口
public class FlowBean implements Writable {
 
    private long upFlow; //上行流量
    private long downFlow; //下行流量
    //2 提供无参构造
    public FlowBean() {
    }
    //3 提供参数的getter和setter方法
    public long getUpFlow() {
        return upFlow;
    }
    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }
    public long getDownFlow() {
        return downFlow;
    }
    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }
 
    //4 实现序列化和反序列化方法,注意顺序一定要保持一致
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
    }
 
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        this.upFlow = dataInput.readLong();
        this.downFlow = dataInput.readLong();
    }
}

Mapper类
通过上面的分析,我们总结出基本步骤是。

package com.root.mapreduce.writable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
 
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
 
        //1 获取一行数据,转成字符串
        String line = value.toString();
 
        //2 切割数据
        String[] split = line.split("\t");
 
        //3 抓取我们需要的数据:手机号,上行流量,下行流量
        String phone = split[0];
        Long up = Long.parseLong(split[split.length - 1]);
        Long down = Long.parseLong(split[split.length - 2]);
 
        //4 封装对象
        FlowBean flowBean = new FlowBean(up, down);
        //5 写出outK outV
        context.write(phone, flowBean);
    }
}

编写Reducer类

package com.root.mapreduce.writable;
 
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
 
public class FlowReducer extends Reducer<Text, FlowBean, Text, Text> {
    private FlowBean outV = new FlowBean();
    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
 
        long totalUp = 0;
        long totalDown = 0;
 
        //1 遍历values,将其中的上行流量,下行流量分别累加
        for (FlowBean flowBean : values) {
            totalUp += flowBean.getUpFlow();
            totalDown += flowBean.getDownFlow();
        }
 
        //2 计算总流量
        String flowDesc = String.format("总上行流量: %d,总下行流量:%d,总流量:%d\n", totalUp, totalDown, (totalUp+totalDown))
 
        //3 写出outK outV
        context.write(key,flowDesc);
    }
}

编写Driver驱动类

package com.root.mapreduce.writable;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
 
public class FlowDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
 
        //1 获取job对象
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
 
        //2 关联本Driver类
        job.setJarByClass(FlowDriver.class);
 
        //3 关联Mapper和Reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);
        
//4 设置Map端输出KV类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);
        
//5 设置程序最终输出的KV类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        
//6 设置程序的输入输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\inputflow"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\flowoutput"));
        
//7 提交Job
        boolean b = job.waitForCompletion(true);
        System.exit(b ? 0 : 1);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值