EK的时间复杂度是O( )。
EK 算法 和 dinic 算法的区别是 :EK是通过 bfs 找到一条增广流,然后累加,循环此步骤直到 bfs 找不到增广流;而 dinic 算法 是通过 bfs 分层找到一条增广流,然后通过 dfs 跑完 当前分层图中所有的增广流,循环此步骤直到 bfs 找不到增广流。
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
const int N=205;
const int M=5005;
struct Edge{
int to,w,next;
}edge[M*2];
int head[N],dis[N],pre[N];
int n,m,s,t,cnt;
void add(int u,int v,int w){
edge[cnt]={v,w,head[u]};
head[u]=cnt++;
}
bool bfs(){//找增广路
memset(dis,0,sizeof dis);
queue<int> q;
q.push(s);
dis[s]=1e18;
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(dis[v]==0 && edge[i].w){
dis[v]=min(dis[u],edge[i].w);
pre[v]=i;//存前驱边
q.push(v);
if(v==t) return true;
}
}
}
return false;
}
int EK(){//累加可行流
int flow=0;
while(bfs()){
int v=t;
while(v!=s){//更新残留网
int i=pre[v];
edge[i].w-=dis[t];
edge[i^1].w+=dis[t];
v=edge[i^1].to;
}
flow+=dis[t];
}
return flow;
}
signed main(){
IOS
cin >> n >> m >> s >> t;
memset(head,-1,sizeof head);
for(int i=1;i<=m;i++){
int u,v,w;
cin >> u >> v >> w;
add(u,v,w);
add(v,u,0);//反向边
}
cout << EK() << endl;
return 0;
}