AI算力报告:算力大时代,AI算力产业链全景梳理

报告深入分析了生成式AI发展引发的算力需求增长,尤其是大模型训练和推理对强大算力的依赖。预计训练和推理端算力将以指数级增长,涉及产业链各环节如先进封装、AI芯片、服务器和基础设施的升级。

今天分享的是AI算力专题系列深度研究报告:《算力大时代,AI算力产业链全景梳理》。

(报告出品方:中信建投证券)

报告共计:98页

核心观点

生成式 AI取得突破,我们对生成式 A 带来的算力需求做了上下游梳理,并做了交叉验证,可以看到以chatGPT 为代表的大模型训练和推理端均需要强大的算力支撑,产业链共振明显,产业链放量顺序为:先进制程制造->以chiplet 为代表的2.5D/3D 封装、HBM->AI 芯片->板卡组装->交换机->光模块-液冷->AI 服务器->IDC 出租运维。综合来看,大模型仍处于混战阶段,应用处于渗透率早期,AI板块中算力需求增长的确定性较高,在未来两年时间内,算力板块都将处于高景气度阶段,重点推荐 AI算力产业链各环节相关公司。

摘要

生成式 AI取得突破,实现了从0到1的跨越,以ChatGPT为代表的人工智能大模型训练和推理需要强大的算力支撑。自2022 年底 OpenAl正式推出ChatGPT后,用户量大幅增长,围绕ChatGPT 相关的应用层出不穷,其通用性能力帮助人类在文字等工作上节省了大量时间。同时在Transformer 新架构下,多模态大模型也取得新的突破,文生图、文生视频等功能不断完善,并在广告、游戏等领域取得不错的进展。生成式A将是未来几年最重要的生产力工具,并深刻改变各个产业环节,围绕生成式A,无论是训练还是推理端,算力需求都将有望爆发式增长。

训练和推理端 AI算力需求或几何倍数增长。首先是训练侧参考 OpenAl论文,大模型训练侧算力需求=训练所需要的token数量*6*大模型参数量。可以看到从GPT3.5到GPT4,模型效果越来越好,模型也越来越大,训练所需要的token 数量和参数量均大幅增长,相应的训练算力需求也大幅增长。并且,与GPT4相关的公开论文也比较少,各家巨头向GPT4迈进的时候,需要更多方向上的探索,也将带来更多的训练侧算力需求。根

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值