联系:
- 同属大数据生态:均为Apache旗下核心项目,服务于大数据处理。
- Hadoop是基础:HDFS为Spark提供数据存储,YARN可作为Spark的资源管理器。
- 目标一致:解决海量数据的存储与计算问题。
对比:
表格
维度 Hadoop Spark
核心组件 由HDFS(存储)、MapReduce(计算)组成 以Spark Core为核心,集成SQL、Streaming等组件
计算模型 基于磁盘的批处理,Map/Reduce分步执行 内存计算为主,支持DAG(有向无环图)流水线计算
处理场景 适合离线批处理任务 擅长实时计算、交互式查询、机器学习等多场景
执行速度 磁盘IO限制导致速度较慢 内存计算大幅提升速度(通常比Hadoop快10-100倍)
编程模型 需编写Map和Reduce函数,较繁琐 提供Scala/Java/Python等简洁API,支持Lambda表达式
总结:
- Hadoop是大数据存储计算的“基石”,适合离线批量处理;Spark是“全能加速引擎”,覆盖多场景实时计算。
- 实际应用中常结合使用:Hadoop存储数据,Spark通过Hive读取数据并加速计算。