spark和Hadoop之间的对比和联系

联系:

 

- 同属大数据生态:均为Apache旗下核心项目,服务于大数据处理。

 

- Hadoop是基础:HDFS为Spark提供数据存储,YARN可作为Spark的资源管理器。

 

- 目标一致:解决海量数据的存储与计算问题。

 

对比:

 

表格

维度 Hadoop Spark 

核心组件 由HDFS(存储)、MapReduce(计算)组成 以Spark Core为核心,集成SQL、Streaming等组件 

计算模型 基于磁盘的批处理,Map/Reduce分步执行 内存计算为主,支持DAG(有向无环图)流水线计算 

处理场景 适合离线批处理任务 擅长实时计算、交互式查询、机器学习等多场景 

执行速度 磁盘IO限制导致速度较慢 内存计算大幅提升速度(通常比Hadoop快10-100倍) 

编程模型 需编写Map和Reduce函数,较繁琐 提供Scala/Java/Python等简洁API,支持Lambda表达式 

 

总结:

 

- Hadoop是大数据存储计算的“基石”,适合离线批量处理;Spark是“全能加速引擎”,覆盖多场景实时计算。

 

- 实际应用中常结合使用:Hadoop存储数据,Spark通过Hive读取数据并加速计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值