离散数学------关系理论

一、序偶和笛卡尔积

序偶

两个序偶如果相等,那么他们相对应的第一第二元素分别相等

笛卡尔积

笛卡尔积是集合之间的一种运算,运算的结果是个序偶,第一元素来自前面的集合,第二元素来自后面的集合。

 两集合进行笛卡尔积运算后集合里的元素个数=两集合元素个数的乘积

二、关系

定义

每种关系都可以用序偶表示,关系是两集合笛卡尔积的子集。

表示方式

题型一:求两集合关系的个数 

定义域和值域 

dom表示定义域

ran表示值域

域是定义域和值域取并集

关系的表示

1、关系图表示法

用单箭头表示从.......到.........的关系

用圆圈表示从直接到直接的关系(同一个集合里)

比如这里要求从a到b要满足小于等于关系

这里1小于3,满足关系,所以从1指向3.

1和它本身也满足这个关系,所以1自己指向自己 

2、矩阵表示法

比如说看从a到b是否有关系

可以把a里面的元素放在矩阵的行,b放在矩阵的列,如果有关系就将相应的位置标位1,没有关系就标为0。

3、矩阵的运算

交运算:两矩阵全是1 的地方才是1,其余地方全是0
并运算:两矩阵全是0的地方才是0,其他地方全是1
乘法运算:对应行列的元素相乘再分别相加。相乘的时候用合取,相加的时候用析取 

关系的运算

 复合运算

逆运算 

关系的运算定理

1、复合运算:

交集是属于不是等于

2、逆运算

关系的幂运算

关系的性质

题型一:如何判断自反、反自反

判断集合自反,看集合里面是否有给定集合所有元素的自生和自生的序偶,必须要所有元素都包含,缺一不可。

反自反:集合里面没有任何一个满足自反的序偶元素。 

这里R里面有A里面所有元素的自反序偶,所以R满足自反条件

S里面没有任何一个序偶满足自反,所以S反自反

T里面自反的元素不全,不满足自反,但是带有几个自反的元素,所以也不满足反自反。

从关系图里来看,

自反要求里面所有元素都要有自环 

反自反要一个自环都没有 

关系矩阵里面

对角线全是1就是自反

对角线都是0是反自反

 题型二:对称和反对称

自反的元素既可以看成是对称也可以看成是反对称

反对称要求集合里面一对对称的都没有

对称要求里面所有元素都对称

关系矩阵

题型三:传递性

要里面所有序偶传递完的结果都在集合里才称为传递

当集合里面只有一个序偶是也称这个集合满足传递性

题型四:闭包 

IA是自反闭包 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
离散数学是一门研究离散结构(如数集、图、集合、逻辑和关系)的数学学科,它是计算机科学、数学逻辑和理论计算机科学的基础。运算在离散数学中通常指的是定义在特定集合上的操作,它们满足一些基本性质,比如L1到L4这样的公理或规则。这些性质常常用于定义运算的行为和证明其性质。 L1 (关联律):对于任何元素a、b和c,运算A满足关联律,如果(A(a, b), a, c) = (a, A(b, c)),即无论怎样改变括号的顺序,运算结果保持不变。 L2 (结合律):类似地,如果对于所有a、b和c,A满足结合律,那么A(a, (b, c)) = (A(a, b), c)。这意味着连续执行多次相同的二元运算可以看作是同时进行的两个步骤。 L3 (存在单位元):如果对于集合中的每个元素a,存在一个元素e,使得A(e, a) = a = A(a, e),则称e为A的左单位元(或者右单位元,根据运算的方向)。这个性质保证了运算有一个可以“不做”而保持元素不变的操作。 L4 (存在逆元):对于每个元素a,如果存在另一个元素b,使得A(a, b) = e 或者 A(b, a) = e,其中e是单位元,那么b就是a的逆元。这表示每个元素都有一个能够“取消”它的操作。 这些性质在代数结构(如群、环、域)的定义中尤其重要,因为它们保证了这些结构具有可预测的行为和一致性。如果你需要了解具体的例子或者更深入的内容,请告诉我,我可以提供更详细的解释以及相关的例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值