一、序偶和笛卡尔积
序偶
两个序偶如果相等,那么他们相对应的第一第二元素分别相等
笛卡尔积
笛卡尔积是集合之间的一种运算,运算的结果是个序偶,第一元素来自前面的集合,第二元素来自后面的集合。
两集合进行笛卡尔积运算后集合里的元素个数=两集合元素个数的乘积
二、关系
定义
每种关系都可以用序偶表示,关系是两集合笛卡尔积的子集。
表示方式
题型一:求两集合关系的个数
定义域和值域
dom表示定义域
ran表示值域
域是定义域和值域取并集
关系的表示
1、关系图表示法
用单箭头表示从.......到.........的关系
用圆圈表示从直接到直接的关系(同一个集合里)
比如这里要求从a到b要满足小于等于关系
这里1小于3,满足关系,所以从1指向3.
1和它本身也满足这个关系,所以1自己指向自己
2、矩阵表示法
比如说看从a到b是否有关系
可以把a里面的元素放在矩阵的行,b放在矩阵的列,如果有关系就将相应的位置标位1,没有关系就标为0。
3、矩阵的运算
交运算:两矩阵全是1 的地方才是1,其余地方全是0
并运算:两矩阵全是0的地方才是0,其他地方全是1
乘法运算:对应行列的元素相乘再分别相加。相乘的时候用合取,相加的时候用析取
关系的运算
复合运算
逆运算
关系的运算定理
1、复合运算:
交集是属于不是等于
2、逆运算
关系的幂运算
关系的性质
题型一:如何判断自反、反自反
判断集合自反,看集合里面是否有给定集合所有元素的自生和自生的序偶,必须要所有元素都包含,缺一不可。
反自反:集合里面没有任何一个满足自反的序偶元素。
这里R里面有A里面所有元素的自反序偶,所以R满足自反条件
S里面没有任何一个序偶满足自反,所以S反自反
T里面自反的元素不全,不满足自反,但是带有几个自反的元素,所以也不满足反自反。
从关系图里来看,
自反要求里面所有元素都要有自环
反自反要一个自环都没有
关系矩阵里面
对角线全是1就是自反
对角线都是0是反自反
题型二:对称和反对称
自反的元素既可以看成是对称也可以看成是反对称
反对称要求集合里面一对对称的都没有
对称要求里面所有元素都对称
关系矩阵
题型三:传递性
要里面所有序偶传递完的结果都在集合里才称为传递
当集合里面只有一个序偶是也称这个集合满足传递性
题型四:闭包
IA是自反闭包