离散数学------关系理论

一、序偶和笛卡尔积

序偶

两个序偶如果相等,那么他们相对应的第一第二元素分别相等

笛卡尔积

笛卡尔积是集合之间的一种运算,运算的结果是个序偶,第一元素来自前面的集合,第二元素来自后面的集合。

 两集合进行笛卡尔积运算后集合里的元素个数=两集合元素个数的乘积

二、关系

定义

每种关系都可以用序偶表示,关系是两集合笛卡尔积的子集。

表示方式

题型一:求两集合关系的个数 

定义域和值域 

dom表示定义域

ran表示值域

域是定义域和值域取并集

关系的表示

1、关系图表示法

用单箭头表示从.......到.........的关系

用圆圈表示从直接到直接的关系(同一个集合里)

比如这里要求从a到b要满足小于等于关系

这里1小于3,满足关系,所以从1指向3.

1和它本身也满足这个关系,所以1自己指向自己 

2、矩阵表示法

比如说看从a到b是否有关系

可以把a里面的元素放在矩阵的行,b放在矩阵的列,如果有关系就将相应的位置标位1,没有关系就标为0。

3、矩阵的运算

交运算:两矩阵全是1 的地方才是1,其余地方全是0
并运算:两矩阵全是0的地方才是0,其他地方全是1
乘法运算:对应行列的元素相乘再分别相加。相乘的时候用合取,相加的时候用析取 

关系的运算

 复合运算

逆运算 

关系的运算定理

1、复合运算:

交集是属于不是等于

2、逆运算

关系的幂运算

关系的性质

题型一:如何判断自反、反自反

判断集合自反,看集合里面是否有给定集合所有元素的自生和自生的序偶,必须要所有元素都包含,缺一不可。

反自反:集合里面没有任何一个满足自反的序偶元素。 

这里R里面有A里面所有元素的自反序偶,所以R满足自反条件

S里面没有任何一个序偶满足自反,所以S反自反

T里面自反的元素不全,不满足自反,但是带有几个自反的元素,所以也不满足反自反。

从关系图里来看,

自反要求里面所有元素都要有自环 

反自反要一个自环都没有 

关系矩阵里面

对角线全是1就是自反

对角线都是0是反自反

 题型二:对称和反对称

自反的元素既可以看成是对称也可以看成是反对称

反对称要求集合里面一对对称的都没有

对称要求里面所有元素都对称

关系矩阵

题型三:传递性

要里面所有序偶传递完的结果都在集合里才称为传递

当集合里面只有一个序偶是也称这个集合满足传递性

题型四:闭包 

IA是自反闭包 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值