辗转相除法(gcd)的原理及代码实现

                                      辗转相除法

辗转相除法,又名欧几里德算法(Euclid's Algorithm),用于计算两个数a,b的最大公约数(Greatest Common Divisor)。(a,b∈N+)

    gcd(a,b)=gcd(b,a mod b)

实现原理:

当a / b = k ...... n时,

若b与n可以被同一个数整除,则a自然也可以被该数整除。

是不是有些迷糊?我们可以自己来推导一下:

a = kb + n

如果b mod x=0,n mod x=0

那么    a = kb + n

        a/x = kb/x + n/x

∵kb/x,n/x∈z

∴a/x∈z

∴a mod x = 0

∴若b与n可以被同一个数整除,则a自然也可以被该数整除

它可以使用递归来实现。(返回条件:a = 0 or b = 0)

代码如下:

#include<iostream>
using namespace std;
unsigned int x,y;
unsigned int gcd(unsigned int a,unsigned int b) {
	if(a==0) return b;if(b==0) return a;
	return gcd(b,a%b);
}
int main() {
	cin>>x>>y;
	cout<<gcd(x,y);
}
#include<stdio.h>
unsigned int x,y;
unsigned int gcd(unsigned int a,unsigned int b) {
	if(a==0) return b;if(b==0) return a;
	return gcd(b,a%b);
}
int main() {
	scanf("%d %d",&x,&y);
	printf("%d",gcd(x,y));
}
x = 0
y = 0

def gcd(a,b) :
    if a==0:
        return b
    if b==0:
        return a
    return gcd(b,a%b)

x = int(input())
y = int(input())
print(gcd(x,y))

                                  利用辗转相除法求最小公倍数

    既然知道了gcd的求法,我们便可以将其应用到求最小公倍数(Least Common Multiple)上。

     lcm(a,b) = a*b/gcd(a,b) = a/gcd(a,b)*b .

    我们可以对之前的代码稍稍添加一点:

#include<iostream>
using namespace std;
unsigned int x,y;
unsigned int gcd(unsigned int a,unsigned int b) {
	if(a==0) return b;if(b==0) return a;
	return gcd(b,a%b);
}
unsigned int lcm(unsigned int a,unsigned int b) {
	return x/gcd(a,b)*y;
}
int main() {
	cin>>x>>y;
	cout<<lcm(x,y);
}

这是我写的第一篇文章,感谢支持!

如有错误,欢迎斧正!

百度:欧几里得算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值