数据结构的二叉树

1.树的概念及结构

生活中的树大家再熟悉不过了,对于树形结构想必大家在中学时期也是略有耳闻,对于数据结构中的二叉树这里有几个定义。
1.1树的概念
树是一种非线性的数据结构,它是由n(n>=0)个节点组成一个具有层次关系的集合。把它叫做树是因为这个数据结构的逻辑顺序看起来像一颗倒着的树。也就是说它的根朝上叶朝下。

1 树有一个特殊的节点,称为根节点,根节点没有前驱节点。
2 除根节点以外,其余节点被分为M(M>0)个互不相交的集合T1、T2、…Ti(1<=i<=M)又是一颗结构与树类似的子树。每棵子树的根节点有且只有一个前驱,可以有0个或者多个后继。
因此树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构。
1.2树的相关概念
在这里插入图片描述

结点的度:一个结点含有的子树的个数称为该结点的度; 如上图:A的为6
叶结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I…等结点为叶结点
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G…等结点为分支结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
树的度:一棵树中,最大的结点的度称为树的度; 如上图:树的度为6
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;
1.2树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct HeapNode
{
	struct HeapNode* leftchild;
	struct HeapNode* pNextbrother;
	DataType data;
}

在这里插入图片描述
1.3树在实际中的运用(表示文件系统的目录树结构)
在这里插入图片描述

2.二叉树的概念及结构

2.1二叉树的概念
一颗二叉树是节点的一个有限集合,该集合
由一个根结点加上两棵别称为左子树和右子树的二叉树组成。
在这里插入图片描述
从图中可以看出:
1.二叉树不存在度大于2的节点。
2.二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树。
对于任意的二叉树都是由以下的几种情况复合而成的:
在这里插入图片描述
这里重点强调两种二叉树:
**1.满二叉树:**一个二叉树,如果每一层的节点数都达到最大值,则这个二叉树就是满二叉树,也就是说,如果一个二叉树的层数为K,且节点总数是2^K-1,则他就是满二叉树。
****2.完全二叉树:****完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而印出来的。对于深度为K的,有n个节点的二叉树,当且仅当其每一个节点都与深度为K的满二叉树中编号从1至n的节点一一对应时称为完全二叉树。要注意满二叉树时一种特殊的完全二叉树。
在这里插入图片描述
2.2二叉树的性质
1.若规定根节点的层数为1,则一颗非空二叉树的第i层上最多有2^(i-1)个节点。
2.若规定根节点的层数为1,则深度为h的二叉树的最大节点数是2^h-1.

2.3二叉树的储存结构
1.1二叉树一般有两种存储方式,一种是顺序结构,另一种是链式结构。
1.顺序储存
顺序结构储存就是使用数组来储存,一般使用数组只适合完全二叉树,因为完全二叉树的物理结构上是连续的,所以这样就避免了不必要的浪费。二叉树顺序储存在物理逻辑上是一个数组,但是在逻辑顺序上是一颗二叉树。
在这里插入图片描述
2.链式储存结构
二叉树的链式储存结构是指用链表来表示一颗二叉树,即用链来指示元素的逻辑关系。通常的方法是链表中每个节点由三个域组成,数据域和左右指针域,左右指针分别用来指出左孩子和右孩子所在的节点的储存地址。链式结构有分为二叉链和三叉链,当前我们学习中一般都是二叉链。
在这里插入图片描述
在这里插入图片描述

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
 struct BinTreeNode* left; // 指向当前结点左孩子   
 struct BinTreeNode* right; // 指向当前结点右孩子 BTDataType data; // 当前结点值域
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值