notes for DW summer camp chem
文章平均质量分 87
goodbye csdn
kriss-spy
这个作者很懒,什么都没留下…
展开
-
notes for datawhale summer camp chemistry task2
本次的任务是进一步了解 AI4Science 相关知识,然后使用深度学习的方法建模。你可以从中:了解一些相关历史、了解 SMILES 和分子指纹,并对 RDkit 工具包有更深的认识;探究深度学习方法如何建模化学中的序列问题。随着计算机技术的发展,将化学知识用计算机存储的方法也一直在发展和进步。原创 2024-07-30 11:33:09 · 470 阅读 · 0 评论 -
notes for datawhale summer camp chemistry task3
循环神经网络:由于所有的前文信息都蕴含在一个隐向量里面,这会导致随着序列长度的增加,编码在隐藏状态中的序列早期的上下文信息被逐渐遗忘。卷积神经网络:受限的上下文窗口在建模长文本方面天然地存在不足。如果需要关注长文本,就需要多层的卷积操作。关于Transformer,不必赘述,参考:[[…/…/大模型/ChatGPT原理与实践/ChatGPT基础科普#2. Transformer|ChatGPT基础科普 - Transformer]]原创 2024-08-02 18:40:07 · 876 阅读 · 0 评论 -
notes for datawhale summer camp chemistry task1
输入:底物和条件,(SMILES)输出:产率,(float,0-1之间)原创 2024-07-28 11:01:30 · 308 阅读 · 0 评论