(动态规划)切割回文

我必须得吐槽一句,这个卡回文判断的复杂度太史了,这份代码直接交会tle,之前在别的网站上做的时候没卡这个。但我觉得找找dp感觉就好,不用太在意是不是一定要ac,毕竟你笔试的时候,很多时候是修不好tle的(代码没问题的情况下),我给出的代码判断回文复杂度为O(n^2),有一份O(1)的题主水平有限实在想不出来,贴这里给大家展示一下吧orz。交的时候交第一份,理解题目的话理解第二份。

#include <iostream>
#include <vector>
#include <cstring>
using namespace std;

const int MAXN = 1010;
char s[MAXN];
int dp[MAXN];
bool isPalindrome[MAXN][MAXN];

int main() {
    int T;
    scanf("%d", &T);
    while (T--) {
        scanf("%s", s + 1);
        int len = strlen(s + 1);

        // 预处理 isPalindrome 表
        memset(isPalindrome, false, sizeof(isPalindrome));

        // 单字符总是回文
        for (int i = 1; i <= len; ++i) {
            isPalindrome[i][i] = true;
        }
        
        // 双字符判断
        for (int i = 1; i < len; ++i) {
            if (s[i] == s[i + 1]) {
                isPalindrome[i][i + 1] = true;
            }
        }
        
        // 长度超过2的子串
        for (int size = 3; size <= len; ++size) { // 从长度3开始
            for (int i = 1; i <= len - size + 1; ++i) {
                int j = i + size - 1;
                if (s[i] == s[j] && isPalindrome[i + 1][j - 1]) {
                    isPalindrome[i][j] = true;
                }
            }
        }

        // 计算最少切割次数
        for (int i = 1; i <= len; ++i) {
            dp[i] = 0x3f3f3f3f;
            for (int j = 1; j <= i; ++j) {
                if (isPalindrome[j][i]) {
                    if (j == 1) {
                        dp[i] = 0;
                    } else {
                        dp[i] = min(dp[i], dp[j - 1] + 1);
                    }
                }
            }
        }

        printf("%d\n", dp[len]);
    }
    return 0;
}
#include <bits/stdc++.h>
using namespace std;
const int N=1010;

char s[N];
int dp[N]; //子串的最小切割回文刀数,我要切多少刀?

bool ishuiwen(int l, int r){
	while(l <= r){
		if(s[l] != s[r]) return false;
		l++, r--;
	}
	return true;
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--){
		scanf(" %s",s+1);
		int len = strlen(s+1);
		for(int i = 0; i <= len; i++) dp[i] = 0x3f3f3f3f;
		
		for(int i = 1; i <= len; i++)
			for(int j = 1; j <= i; j++)
				if(ishuiwen(j, i)){
					if(j==1) dp[i] = 0; //一整个回文串
					else dp[i] = min(dp[i], dp[j-1]+1);
				}
		//解释一下我每一轮的i循环都会使dp数组更新一遍,比如字符串abcdedc
		//我更新到abcde的时候还是要切4刀,更新到abcded的时候ded构成回文串,所以dp【len】被更新成了3,abcdedc的时候变成了2
		//可以画个表手动模拟一遍
		//		i	子串	回文判定	dp[i] 更新
		//		
		//		1	a		是			dp[1] = 0
		//		2	ab		否			dp[2] = 1
		//		3	abc		否			dp[3] = 2
		//		4	abcb	否			dp[4] = 3
		//		5	abcba	是			dp[5] = 0
		
		cout<<dp[len]<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值