我必须得吐槽一句,这个卡回文判断的复杂度太史了,这份代码直接交会tle,之前在别的网站上做的时候没卡这个。但我觉得找找dp感觉就好,不用太在意是不是一定要ac,毕竟你笔试的时候,很多时候是修不好tle的(代码没问题的情况下),我给出的代码判断回文复杂度为O(n^2),有一份O(1)的题主水平有限实在想不出来,贴这里给大家展示一下吧orz。交的时候交第一份,理解题目的话理解第二份。
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
const int MAXN = 1010;
char s[MAXN];
int dp[MAXN];
bool isPalindrome[MAXN][MAXN];
int main() {
int T;
scanf("%d", &T);
while (T--) {
scanf("%s", s + 1);
int len = strlen(s + 1);
// 预处理 isPalindrome 表
memset(isPalindrome, false, sizeof(isPalindrome));
// 单字符总是回文
for (int i = 1; i <= len; ++i) {
isPalindrome[i][i] = true;
}
// 双字符判断
for (int i = 1; i < len; ++i) {
if (s[i] == s[i + 1]) {
isPalindrome[i][i + 1] = true;
}
}
// 长度超过2的子串
for (int size = 3; size <= len; ++size) { // 从长度3开始
for (int i = 1; i <= len - size + 1; ++i) {
int j = i + size - 1;
if (s[i] == s[j] && isPalindrome[i + 1][j - 1]) {
isPalindrome[i][j] = true;
}
}
}
// 计算最少切割次数
for (int i = 1; i <= len; ++i) {
dp[i] = 0x3f3f3f3f;
for (int j = 1; j <= i; ++j) {
if (isPalindrome[j][i]) {
if (j == 1) {
dp[i] = 0;
} else {
dp[i] = min(dp[i], dp[j - 1] + 1);
}
}
}
}
printf("%d\n", dp[len]);
}
return 0;
}
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
char s[N];
int dp[N]; //子串的最小切割回文刀数,我要切多少刀?
bool ishuiwen(int l, int r){
while(l <= r){
if(s[l] != s[r]) return false;
l++, r--;
}
return true;
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf(" %s",s+1);
int len = strlen(s+1);
for(int i = 0; i <= len; i++) dp[i] = 0x3f3f3f3f;
for(int i = 1; i <= len; i++)
for(int j = 1; j <= i; j++)
if(ishuiwen(j, i)){
if(j==1) dp[i] = 0; //一整个回文串
else dp[i] = min(dp[i], dp[j-1]+1);
}
//解释一下我每一轮的i循环都会使dp数组更新一遍,比如字符串abcdedc
//我更新到abcde的时候还是要切4刀,更新到abcded的时候ded构成回文串,所以dp【len】被更新成了3,abcdedc的时候变成了2
//可以画个表手动模拟一遍
// i 子串 回文判定 dp[i] 更新
//
// 1 a 是 dp[1] = 0
// 2 ab 否 dp[2] = 1
// 3 abc 否 dp[3] = 2
// 4 abcb 否 dp[4] = 3
// 5 abcba 是 dp[5] = 0
cout<<dp[len]<<endl;
}
return 0;
}