前言
我相信大家在找数据分析相关的工作时候,就会发现种类很多,那么到底应该选择哪一种职业方向?今天和大家分享一下目前主流的几类数据分析岗位,希望对正在想做数据分析师得你有帮助~
1、职业路线主要分业务线和技术线
目前,数据分析相关职业类型主要分业务线和技术线:偏业务线职位一般都会以业务+分析师命名,比如运营分析师、商业分析师、风险分析师等,需要对业务有深刻的认识;偏技术线职位多为责任模块+工程师命名,如数据治理工程师、数据开发工程师、大模型工程师,数据架构师等;当然也有对两者要求都比较高的比如数据科学家、大数据专家、首席数据科学家等,这一类职位可以说是站在数据分析领域的食物链顶端,岗位要求极高,对应的薪酬自由度也很高啦,浅看一下招聘职位名称和薪酬以及要求具备的能力:
数据分析职业路线(薪酬参考招聘网站)
2、业务线主要工作模块和常用技能工具
(1)主要工作模块
市场分析:市场调研、数据清洗整理、行情分析、业务数据支持、数据可视化等
运营分析:数据预处理、可视化、业务指标体系搭建、企业数据链梳理维护、业务洞察预警预测等
商业分析:产品、市场、业务等多维度分析、商业数据报告撰写、分析项目需求和解决方案等
数据挖掘:挖掘数据中的价值和信息、运用数据挖掘算法模型分析关键因素优化核心决策等
(2)参考工具
数据处理:EXCEL WPS SPSS Matlab R SQL
可视化: Tableau FineBI PowerBI
数据挖掘:Python IBM Cognos
数据库: MySQL Oracle
3、技术线主要工作模块和常用技能工具
(1)主要工作模块
开发运维:数据库开发运维、模型设计、安全管理、ETL开发等、性能优化、生态环境搭建等
算法模型:算法模型设计优化、算法部署维护、模型开发实现、算法测试验证等
数据治理:数据资产管理、数据质量管理、数据安全和隐私保护、数据治理平台维护等
(2)参考工具
分析工具: Python(numpy pandas scipy Matpltlib) weka
生态系统:Linux Hadoop Hbase Hive Zookeeper Spark Flink Storm
编程语言:Java Python C++
▍学习资源推荐
零基础Python学习资源介绍
👉Python学习路线汇总👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(学习教程文末领取哈)
👉Python必备开发工具👈
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉实战案例👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉100道Python练习题👈
检查学习结果。
👉面试刷题👈
资料领取
上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取。