这是基于代码随想录的每日打卡
322. 零钱兑换
给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
动态规划
class Solution:
"""
1.确定dp[j]的含义:背包容量为j,装满时最少的物品个数
2.递推公式:dp[j]=min(dp[j],dp[j-coins[i]]+1)
3.dp数组如何初始化:dp[0]=0
4.遍历顺序:从前往后
5.打印dp数组
"""
def coinChange(self, coins: List[int], amount: int) -> int:
# 表示金额无法组成时的初始状态
dp=[float('inf') for _ in range(amount+1)]
dp[0]=0
for coin in coins:
for j in range(coin,amount+1):
dp[j]=min(dp[j],dp[j-coin]+1)
if dp[amount]!=float('inf'):
return dp[amount]
else:
return -1
运行结果
279. 完全平方数
给你一个整数 n
,返回 和为 n
的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1
、4
、9
和 16
都是完全平方数,而 3
和 11
不是。
示例 1:
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n = 13
输出:2
解释:13 = 4 + 9
动态规划
class Solution:
"""
1.确定dp[j]的含义:背包容量为j时,装满所需要的完全平方数的最少数量
2.递推公式:dp[j]=min(dp[j],dp[j-i]+1)
3.dp数组如何初始化:dp[0]=1
4.遍历顺序:从前往后
5.打印dp数组
"""
def numSquares(self, n: int) -> int:
dp=[float('inf')]*(n+1)
dp[0]=0
# 遍历物品再遍历背包
for i in range(1,int(n**0.5)+1):
for j in range(n+1):
if j>=i**2:
dp[j]=min(dp[j],dp[j-i**2]+1)
return dp[n]
运行结果
139. 单词拆分
给你一个字符串 s
和一个字符串列表 wordDict
作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s
则返回 true
。
注意: 不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
示例 1:
输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。
示例 2:
输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。
注意,你可以重复使用字典中的单词。
示例 3:
输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false
动态规划
class Solution:
"""
1.确定dp[j]的含义:背包容量为j(字符串长度)时可不可以装满
2.递推公式:dp[j]=(dp[i] and s[i:j] in wordDict)
3.dp数组如何初始化:dp[0]=True 不装就装满了
4.遍历顺序:从前往后
5.打印dp数组
"""
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
dp=[False for i in range(len(s)+1)]
dp[0]=True
for j in range(1,len(s)+1):
for i in range(j):
if dp[i] and s[i:j] in wordDict:
dp[j]=True
return dp[-1]
运行结果