Day 43 卡玛笔记

这是基于代码随想录的每日打卡

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

动态规划

class Solution:
    """
    1.确定dp[j]的含义:背包容量为j,装满时最少的物品个数
    2.递推公式:dp[j]=min(dp[j],dp[j-coins[i]]+1)
    3.dp数组如何初始化:dp[0]=0    
    4.遍历顺序:从前往后
    5.打印dp数组
    """
    def coinChange(self, coins: List[int], amount: int) -> int:
        # 表示金额无法组成时的初始状态
        dp=[float('inf') for _ in range(amount+1)]
        dp[0]=0
        for coin in coins:
            for j in range(coin,amount+1):
                dp[j]=min(dp[j],dp[j-coin]+1)

        if dp[amount]!=float('inf'):
            return dp[amount]
        else:
            return -1

运行结果

在这里插入图片描述



279. 完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

动态规划

class Solution:
    """
    1.确定dp[j]的含义:背包容量为j时,装满所需要的完全平方数的最少数量
    2.递推公式:dp[j]=min(dp[j],dp[j-i]+1)
    3.dp数组如何初始化:dp[0]=1 
    4.遍历顺序:从前往后
    5.打印dp数组
    """
    def numSquares(self, n: int) -> int:
        dp=[float('inf')]*(n+1)
        dp[0]=0
        # 遍历物品再遍历背包
        for i in range(1,int(n**0.5)+1):
            for j in range(n+1):
                if j>=i**2:
                    dp[j]=min(dp[j],dp[j-i**2]+1)
        return dp[n]

运行结果

在这里插入图片描述



139. 单词拆分

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true

注意: 不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

示例 1:

输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。

示例 2:

输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。
     注意,你可以重复使用字典中的单词。

示例 3:

输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false

动态规划

class Solution:
    """
    1.确定dp[j]的含义:背包容量为j(字符串长度)时可不可以装满
    2.递推公式:dp[j]=(dp[i] and s[i:j] in wordDict)
    3.dp数组如何初始化:dp[0]=True  不装就装满了
    4.遍历顺序:从前往后
    5.打印dp数组
    """
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        dp=[False for i in range(len(s)+1)]
        dp[0]=True
        for j in range(1,len(s)+1):
            for i in range(j):
                if dp[i] and s[i:j] in wordDict:
                    dp[j]=True
        return dp[-1]

运行结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

noruta

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值