P2755 洗牌问题

文章讨论了如何通过一种特定的洗牌规则(将大于n的数移动到2*(i-n)-1位置,小于等于n的数移动到2i位置),在给定n的情况下找到使牌恢复初始顺序所需的最少洗牌次数m。给出了一个C++代码示例来解决这个问题。
摘要由CSDN通过智能技术生成

题目描述

有 2n 张牌,编号为

1,2,3…n,n+1,…2n

这也是最初的牌的顺序。一次洗牌是把序列变为

n+1,1,n+2,2,n+3,3,n+4,4…2n,n

可以证明,对于任意自然数 n,都可以在经过 m 次洗牌后第一次重新得到初始的顺序。

现给定 n(n≤108),求出m 的值。

输入格式

一行,一个正整数 n。

输出格式

一行,一个正整数 m。

输入输出样例

输入 #1复制

20

输出 #1复制

20

例如:n==3

0:1 2 3 4 5 6

1:4 1 2 6 3

2:2 4 6 1 3 5

3:1 2 3 4 5 6

这样就会发现一个规律:所有在大于n的位置上的数都要移到2(i-n)-1的位置上,所有在<=n位置上的数都要移到2i的位置上。

由此,可以做一个假设,如果我们确定一个数,不断更改他上面的位置,那只要他回到最初的位置上,是不是就说明所有数都会到了原来的位置上。

例如:n==2

0:2 3 4

1:3 4 2

2:4 3 2 1

3:2 4 1 3

4:1 2 3 4

猜想正确

#include <bits/stdc++.h>
using namespace std;
int main(){
    int n,i=1,m=0;
    cin>>n;
    while(1){
        if(i>n) i=2*(i-n)-1;  
        else i=i*2;
        m++;
        if(i==1) break;
    }
    cout<<m;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值