题目描述
有 2n 张牌,编号为
1,2,3…n,n+1,…2n
这也是最初的牌的顺序。一次洗牌是把序列变为
n+1,1,n+2,2,n+3,3,n+4,4…2n,n
可以证明,对于任意自然数 n,都可以在经过 m 次洗牌后第一次重新得到初始的顺序。
现给定 n(n≤108),求出m 的值。
输入格式
一行,一个正整数 n。
输出格式
一行,一个正整数 m。
输入输出样例
输入 #1复制
20
输出 #1复制
20
例如:n==3
0:1 2 3 4 5 6
1:4 1 5 2 6 3
2:2 4 6 1 3 5
3:1 2 3 4 5 6
这样就会发现一个规律:所有在大于n的位置上的数都要移到2(i-n)-1的位置上,所有在<=n位置上的数都要移到2i的位置上。
由此,可以做一个假设,如果我们确定一个数,不断更改他上面的位置,那只要他回到最初的位置上,是不是就说明所有数都会到了原来的位置上。
例如:n==2
0:1 2 3 4
1:3 1 4 2
2:4 3 2 1
3:2 4 1 3
4:1 2 3 4
猜想正确
#include <bits/stdc++.h>
using namespace std;
int main(){
int n,i=1,m=0;
cin>>n;
while(1){
if(i>n) i=2*(i-n)-1;
else i=i*2;
m++;
if(i==1) break;
}
cout<<m;
return 0;
}