题目描述
火车从始发站(称为第 11 站)开出,在始发站上车的人数为 �a,然后到达第 22 站,在第 22 站有人上、下车,但上、下车的人数相同,因此在第 22 站开出时(即在到达第 33 站之前)车上的人数保持为 �a 人。从第 33 站起(包括第 33 站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第 �−1n−1 站),都满足此规律。现给出的条件是:共有 �n 个车站,始发站上车的人数为 �a,最后一站下车的人数是 �m(全部下车)。试问 �x 站开出时车上的人数是多少?
输入格式
输入只有一行四个整数,分别表示始发站上车人数 �a,车站数 �n,终点站下车人数 �m 和所求的站点编号 �x。
输出格式
输出一行一个整数表示答案:从 �x 站开出时车上的人数。
输入输出样例
输入 #1复制
5 7 32 4
输出 #1复制
13
通过递推方面想,可以联想覅波纳契数列
1 2 3 4 5 6
上车人数:a b a+b a+2b 2a+3b 3a+5b
下车人数:0 b b a+b a+2b 2a+3b
发车人数:a a 2a 2a+b 3a+2b 4a+4b
这其中含有未知数:b,a的系数,b的系数
b可以推理出来,b等于最后一站总人数-a的系数×a÷b的系数,所以我们通过递推求系数
可以发现,每次a的系数是前两次a系数和-1,b系数是前两次b系数和+1
#include <bits/stdc++.h>
using namespace std;
int num1[25]={},num2[25]={};
int main()
{
int a,n,m,x;
cin>>a>>n>>m>>x;
num1[2]=1;
num1[3]=2;
for(int i=4;i<n;i++){
num1[i]=num1[i-1]+num1[i-2]+1;
num2[i]=num2[i-1]+num2[i-2]-1;
}
int b=(m-a*num1[n-1])/num2[n-1];
cout<<num1[x]*a+num2[x]*b;
return 0;
}