P1011 [NOIP1998 提高组] 车站

题目描述

火车从始发站(称为第 11 站)开出,在始发站上车的人数为 �a,然后到达第 22 站,在第 22 站有人上、下车,但上、下车的人数相同,因此在第 22 站开出时(即在到达第 33 站之前)车上的人数保持为 �a 人。从第 33 站起(包括第 33 站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第 �−1n−1 站),都满足此规律。现给出的条件是:共有 �n 个车站,始发站上车的人数为 �a,最后一站下车的人数是 �m(全部下车)。试问 �x 站开出时车上的人数是多少?

输入格式

输入只有一行四个整数,分别表示始发站上车人数 �a,车站数 �n,终点站下车人数 �m 和所求的站点编号 �x。

输出格式

输出一行一个整数表示答案:从 �x 站开出时车上的人数。

输入输出样例

输入 #1复制

5 7 32 4

输出 #1复制

13

通过递推方面想,可以联想覅波纳契数列

                  1  2    3        4             5             6        

上车人数:a  b  a+b   a+2b      2a+3b     3a+5b    

下车人数:0  b    b      a+b         a+2b     2a+3b    

发车人数:a  a    2a     2a+b     3a+2b    4a+4b    

这其中含有未知数:b,a的系数,b的系数

b可以推理出来,b等于最后一站总人数-a的系数×a÷b的系数,所以我们通过递推求系数

可以发现,每次a的系数是前两次a系数和-1,b系数是前两次b系数和+1

#include <bits/stdc++.h>
using namespace std;
int num1[25]={},num2[25]={};
int main()
{
    int a,n,m,x;
    cin>>a>>n>>m>>x;
    num1[2]=1;
    num1[3]=2;
    for(int i=4;i<n;i++){
        num1[i]=num1[i-1]+num1[i-2]+1;
        num2[i]=num2[i-1]+num2[i-2]-1;
    }
    int b=(m-a*num1[n-1])/num2[n-1];
    cout<<num1[x]*a+num2[x]*b;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值