基于深度学习使用组织病理学和DNA甲基化预测中枢神经系统肿瘤分型

**标签:DNA甲基化、神经系统、肿瘤分型、深度学习,1区,**IF=53
在这里插入图片描述

论文作者及单位
一作Danh-Tai Hoang澳大利亚国立大学生物科学数据研究所
第一通讯作者Eytan Ruppin美国国家癌症数据与科学实验室
第二通讯作者Kenneth Aldape美国国家癌症数据与科学实验室

1. 论文数据与DEPLOY****模型总体流程设计图如下。利用组织病理学图像将中枢神经系统(CNS)肿瘤分为10个类别。DEPLOY分为三部分:01部分直接从病理切片中提取特征,用于分类肿瘤;02部分基于切片数据预测DNA甲基化 值,该值用于肿瘤分类模型;03部分使用患者人口统计学信息。通过三部分特征来进行中枢神经系统肿瘤分类。
在这里插入图片描述

2. 临床背景与痛点

(1)中枢神经系统多种肿瘤类型准确诊断对最佳治疗至关重要。DNA甲基化图谱捕获数千个CpG位点甲基化状态,可提高诊断准确性,但操作耗时,不能广泛使用。

(2)世界卫生组织(WHO)确认了100多种中枢神经系统肿瘤类型,诊断过程始于苏木精和伊红(H&E)染色玻片检查。使用常规组织病理学和免疫组织化学等技术,中枢神经系统肿瘤的诊断可能会受到观察者之间的差异。全基因组DNA甲基化分析已被作为一种重要的诊断方式提出。基于DNA甲基化的中枢神经系统肿瘤分类器既反映了细胞的起源,也反映了肿瘤发生过程中获得的变化,虽然功能强大,但该检测目前仅在少数中心进行,目前在资源不足的地区尚不可行。常用的甲基化平台利用全基因组阵列,提供基因组中约850,000个位点的CpG位点特异性甲基化水平(β值)数据。

(3)深度学习方法已经显示出基于H&E图像预测肿瘤基因组特征的潜力,包括基因突变、大量信使RNA测序表达和空间信使RNA测序表达。

(4)关于DNA甲基化,先前的工作利用形态特征来分类胶质瘤中的高甲基化和低甲基化水平但目前还没有研究使用深度学习模型从组织病理学图像中预测大基因组尺度的DNA甲基化β值,然后利用这些预测的甲基化值对肿瘤类型进行分类。如果深度学习模型可以预测基因组中许多CpG位点的甲基化状态,它可能有助于提高诊断的准确性,而不需要甲基化分析,这涉及成本和基础设施,目前在许多中心都无法获得。临床实验室甲基化检测所需周转时间(几周)较长会耽误延误诊断,因此对于可能患有高度侵袭性肿瘤的患者,需要及时的治疗干预。

3. 贡献

(1)模型结构设计部分创新:训练一个模型来准确预测H&E图像中DNA甲基化β值。然后预测的β值用于肿瘤类型分类。直接从H&E图像中分类肿瘤类型,而不需要任何中间分子水平的预测。引入第三个人口统计学模型,该模型旨在通过利用年龄、性别和活检位置信息对肿瘤进行分类。

(2)模型准确性:DEPLOY可以准确预测CpG位点子集上肿瘤甲基化水平,并用这些甲基化水平将样本分类。且该模型在三个大型外部验证集上测试。

(3)模型推理速度:可快速评估病人,可以帮助病理学家诊断具有挑战性的病例,并在资源有限的地区推进脑癌治疗。

4. 模型设计与优化

模型部分分为6部分分别为:(1)图像预处理;(2)特征选择;(3)特征压缩;

(4)间接模型;(5)直接模型;(6)人口统计学模型:人口统计学模型以患者的年龄、性别和手术部位(大脑半球、后窝、硬脑膜基底、脑室、脊髓和腰椎)作为输入,预测肿瘤类型作为输出。与间接模型类似,采用了逻辑回归、支持向量机、k近邻和随机森林四种传统的机器学习算法。

5. 实验设计与结果
在这里插入图片描述
在这里插入图片描述

6. 数据集与代码

(1)DBTA数据集包括WSI、肿瘤类型和人口统计学,数据可用https://ebrains.eu

(2)CBTN(Children Brain Tumor Network)数据集在请求后让下载https://cbtn.org/

(3)代码已下载:https://zenodo.org/records/10888478

7. BioMedical AI Project Learner****学习感言

发现美国国家癌症中心Kenneth Aldape教授是专门做原发性脑肿瘤的基因组学和分子发病机制研究,而且他说结合DNA甲基化,使用深度学习做脑肿瘤类型预测的研究很少,以后可多多关注他们组。

医学AI助力疾病预测、识别、诊断、干预、治疗与预后,涉及影像组学、病理组学、生信分析和电生理等等技术。BioMedicalAI一个专注于AI+医学的开源学习组织,汇聚了众多医学AI项目的探索者,取长补短,互相学习。和探索者一起成长,for the ai project learner!
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值