YOLO系列
·YOLO-V1
- 经典的one-stage方法
- You Only Look Once,名字就已经说明了一切!
- 把检测问题转化成回归问题,一个CNN就搞定了!
- 可以对视频进行实时检测,应用领域非常广!
核心思想
网络架构
每个数字的含义:
损失函数:
- 10 =(X,Y,H,W,C)*B(2个)
- 当前数据集中有20个类别
- 7*7表示最终网格的大小
- (S*S)*(B*5+C)
·NMS(非极大值抑制):
·YOLO-V1:
问题2:小物体检测效果一般,长宽比可选的但单一
- 优点:快速,简单!
- 问题1:每个Cell只预测一个类别,如果重叠无法解决
- ·YOLO-V2:更快!更强!
YOLO-V2-Batch Normalization
V2版本舍弃Dropout,卷积后全部加入Batch Normalization
网络的每一层的输入都做了归一化,收敛相对更容易
YOLO-V2-更大的分辨率
YOLO-V2-网络结构
这样会导致收敛问题,模型不稳定,尤
- V1训练时用的是224*224,测试时使用448*448
- 可能导致模型水土不服,V2训练时额外又进行了10次448*448的微调
- 使用高分辨率分类器后,YOLOv2的mAP提升了约4%
- DarkNet,实际输入为416*416
- 没有FC层,5次降采样(13*13)
- 1*1卷积节省了很多参数
-
·YOLO-V2-聚类提取先验框
- faster-rcnn系列选择的先验比例都是常规的,但是不一定完全适合数据集
- K-means聚类中的距离:
- YOLO-V2-Anchor Box
- 通过引入anchor boxes,使得预测的box数量更多(13*13*n)
- 跟faster-rcnn系列不同的是先验框并不是直接按照长宽固定比给定
- YOLO-V2-Directed Location Prediction
- bbox:中心为(xp,yp);宽和高为(wp,hp),则:
- tx=1,则将bbox在x轴向右移动wp;tx=−1则将其向左移动wp
- 其是刚开始进行训练的时候
- V2中并没有直接使用偏移量,而是选择相对grid cell的偏移量
- YOLO-V2-Directed Location Prediction
- 计算公式为:
YOLO-V2-Directed Location Prediction
- 例如预测值(σtx,σty,tw,th)=(0.2,0.1,0.2,0.32),anchor框为
- 在特征图位置:
-
在原位置:
-
感受野:概述来说就是特征图上的点能看到原始图像多大区域。
-
-
感受野:
- 如果堆叠3个3*3的卷积层,并且保持滑动窗口步长为1,其感受野就是7*7的了,这跟一个使用7*7卷积核的结果是一样的,那为什么非要堆叠3个小卷积呢?
- 算一下其各自所需参数:
-
- 很明显,堆叠小的卷积核所需的参数更少一些,并且卷积过程越多,特征提取也会越细致,加入的非线性变换也随着增多,还不会增大权重参数个数,这就是VGG网络的基本出发点,用小的卷积核来完成体特征提取操作。
-
YOLO-V2-Fine-Grained Features
- 最后一层时感受野太大了,小目标可能丢失了,需融合之前的特征。
-
YOLO-V2-Multi-Scale
- 都是卷积操作可没人能限制我了!一定iterations之后改变输入图片大小。
- 最小的图像尺寸为320 x 320。
- 最大的图像尺寸为608 x 608。
-