概率论和统计学为大模型提供了处理不确定性和随机性的理论基础。在自然语言处理中,语言模型通过概率分布预测下一个词的出现,贝叶斯定理则用于推理和更新模型的信念。此外,统计学中的假设检验和置信区间可以帮助评估模型的性能和可靠性。例如,在模型训练中,交叉验证是一种常用的统计方法,用于估计模型在未知数据上的表现。
概率论和统计学为大模型提供了处理不确定性和随机性的理论基础。在自然语言处理中,语言模型通过概率分布预测下一个词的出现,贝叶斯定理则用于推理和更新模型的信念。此外,统计学中的假设检验和置信区间可以帮助评估模型的性能和可靠性。例如,在模型训练中,交叉验证是一种常用的统计方法,用于估计模型在未知数据上的表现。