2024年Python最全Python 爬取大众点评 50 页数据,最好吃的成都火锅竟是它!

文章分析了大众点评上的火锅店星级评价与评论数量、人均消费的关系,发现四星以上商户评论数与星级无明显关联,而价格和口味等服务质量对消费者选择有较大影响。通过K-means聚类,作者提出了基于特定条件的推荐策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大众点评已经给出了星级评价,可以看看大致趋势。

在这里插入图片描述

准五星商户最多,可能因为大部分食客都习惯给好评,只有实在不满时才会打出低评有关,造成了评级一般不低,但近满分还是蛮少的。

在本文,我们假设评论数目为饭店的热度,也就是它越火,评论数目越多。

在这里插入图片描述

评论数目大多在1000以内,但是高于2000,甚至高于4000也还存在一些,这些饭店应该是一些网红店。以5000为约束,筛选出饭店均为小龙坎、蜀大侠都非常知名的火锅店。那么评论数量和星级有关系吗?看下图:

在这里插入图片描述

这里取其评论数平均值,发现对于四星以上商户来说,评论数和星级并不关系,但均比低于四星的饭店销量更好。这说明在四星以上之后,人们选择差别不大,但一般不愿意接受评论太差的饭店。

对于笔者这样的学生党来说,影响较大还有人均消费情况。

在这里插入图片描述

成都的火锅店人均消费大部分都在50-100的区间内,高于150的也有一些。对于笔者来讲,吃一顿火锅,人均在50-100是可以接受的,高于100,就要低头看看钱包了()。那扩展看,人均消费和星级、评论数量有关系吗?

在这里插入图片描述

上图是人均消费和星级的关系,看起来并无任何关系,那说明一些口碑好的火锅店,其实人均也不贵。下面看看人均和评论数目的关系吧。

在这里插入图片描述

通过比较,发现评论数目低于500,人均在50-100区间是最多的。当然这肯定和评论数量、人均消费本身集中于这一阶段有关。

吃火锅,一家店的生意好坏,肯定还和它的特色菜有关,笔者通过jieba分词,将爬取到的推荐菜做了一个词云图,如下。

在这里插入图片描述

笔者最爱的牛肉是特色菜之最啊,尤其是麻辣牛肉,只要去吃火锅,都要来上一份,其次是毛肚、虾滑、鹅肠等等。

接下来是大家都关心的,口味、环境和服务的情况。

在这里插入图片描述

三者得分大多都是集中在8.0-9.2这一阶段,笔者认为,低于7.5分的饭店还是不要去尝试了。同时,星级评价应该也是由这三者得分产生的。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

果然如预想的一向,星级评价越好,它在口味、环境和服务的得分越高。那么口味,环境,服务得分与评论数量,平均价格有关系吗?

在这里插入图片描述

如图所看,并无什么直接关系,但是我们发现口味、环境和服务三者之间存在着非常好的线性关系,于是单独拿出来画了一个较大的图。

在这里插入图片描述

我们并且拟合了线性关系,由于三星商户只有一家,它的情况较为特殊之外,其他星级在口味、环境和服务的关系拟合中保持的相当一致,这也证明我们的猜想,这些变量之间存在线性关系。鉴于笔者本文最大的目的是做推荐,于是,我们进行了K-means聚类,这里取K为3,并且把星级转换为数字,五星对应5分,准五星对应4.5分,以此类推。最终得到了三类,通过作图,看看聚类情况如何吧。

在这里插入图片描述

和我们想要的结果一致,在口味、环境、服务和星级上得分越高,我们就越推荐。然而推荐的店铺还是好多,能不能在集中一些呢?于是通过限制评论数量、人均消费和特色菜来进行推荐。由于笔者喜欢人少,便宜还有牛肉的店铺,这里得到了如下的结果:

在这里插入图片描述

代码


import time

import requests

from pyquery import PyQuery as pq

import pandas as pd

headers = {‘User-Agent’: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36’}

def restaurant(url):

获取网页静态源代码

try:

response = requests.get(url, headers=headers)

if response.status_code == 200:

return response.text

except Exception:

return None

name=[]

url = []

star = []

comment = []

avg_price = []

taste = []

environment = []

services = []

recommend = []

num = {‘hs-OEEp’: 0, ‘hs-4Enz’: 2, ‘hs-GOYR’: 3, ‘hs-61V1’: 4, ‘hs-SzzZ’: 5, ‘hs-VYVW’: 6, ‘hs-tQlR’: 7, ‘hs-LNui’: 8, ‘hs-42CK’: 9}

def detail_number(htm):

try:

a = str(htm)

a = a.replace(‘1<’, ‘<’)

a = a.replace(‘.’, ‘’)

b = pq(a)

cn = b(‘span’).items()

number = ‘’

for i in cn:

attr = i.attr(‘class’)

if attr in num:

attr = num[attr]

number = number + str(attr)

number = number.replace(‘None’, ‘’)

except:

number = ‘’

return number

def info_restaurant(html):

获取饭店的名称和链接

doc = pq(html)

for i in range(1,16):

#获取饭店名称

shop_name = doc(‘#shop-all-list > ul > li:nth-child(’+str(i)+‘) > div.txt > div.tit > a:nth-child(1) > h4’).text()

if shop_name == ‘’:

break

name.append(shop_name)

#获取饭店链接

url.append(doc(‘#shop-all-list > ul > li:nth-child(’+str(i)+‘) > div.pic > a’).attr(‘href’))

try:

star.append(doc(‘#shop-all-list > ul > li:nth-child(’+str(i)+‘) > div.txt > div.comment > span’).attr(‘title’))

except:

star.append(“”)

#获取评论数量

comment_html = doc(‘#shop-all-list > ul > li:nth-child(’+str(i)+‘) > div.txt > div.comment > a.review-num > b’)

comment.append(detail_number(comment_html))

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值