默认值是 0;
byte 类型用在大型数组中节约空间,主要代替整数,因为 byte 变量占用的空间只有 int 类型的四分之一;
例子:byte a = 100,byte b = -50。
short 数据类型是 16 位、有符号的以二进制补码表示的整数
最小值是 -32768(-2^15);
最大值是 32767(2^15 - 1);
Short 数据类型也可以像 byte 那样节省空间。一个short变量是int型变量所占空间的二分之一;
默认值是 0;
例子:short s = 1000,short r = -20000。
int 数据类型是32位、有符号的以二进制补码表示的整数;
最小值是 -2,147,483,648(-2^31);
最大值是 2,147,483,647(2^31 - 1);
一般地整型变量默认为 int 类型;
默认值是 0 ;
例子:int a = 100000, int b = -200000。
long 数据类型是 64 位、有符号的以二进制补码表示的整数;
最小值是 -9,223,372,036,854,775,808(-2^63);
最大值是 9,223,372,036,854,775,807(2^63 -1);
这种类型主要使用在需要比较大整数的系统上;
默认值是 0L;
例子: long a = 100000L,Long b = -200000L。
"L"理论上不分大小写,但是若写成"l"容易与数字"1"混淆,不容易分辩。所以最好大写。
float 数据类型是单精度、32位、符合IEEE 754标准的浮点数;
float 在储存大型浮点数组的时候可节省内存空间;
默认值是 0.0f;
浮点数不能用来表示精确的值,如货币;
例子:float f1 = 234.5f。
double 数据类型是双精度、64 位、符合IEEE 754标准的浮点数;
浮点数的默认类型为double类型;
double类型同样不能表示精确的值,如货币;
默认值是 0.0d;
例子:double d1 = 123.4。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-D5SDQQs6-1712848133851)]