既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
- 对于回归问题(t是连续的),正态分布假设是自然的。
- 对于分类问题(t是离散的),正态分布假设会很奇怪。
- 对于二分类问题的数据分布有更适合的假设 ----> 伯努利分布
为什么伯努利分布更适合二分类问题呢?
二、Logistic回归
对于一个二分类任务,一个0-1单元足以表示一个标签
尝试学习条件概率(已经将b融入,x为输入,t为标签)
我们的目标是寻找一个 值使得概率
当x属于类别1时,取很大的值如0.99999。
当x属于类别2时,取很小的值如0.00001 (因此 取很大的值)
我们实质上是在用另一个连续函数 h 来 “回归” 一个离散的函数 (x -> t)
交叉熵误差函数(CSE)
对于伯努利分布,我们最大化条件数据似然,得到等同于最小化:
得到新的损失函数(CSE)
我们拿出其中一项:
- 可见,如果t=1, 则E = -ln(h)
- 如果t=0, 则E = -ln(1-h)
可见河里。
训练和测试
二分类问题总结
三、SoftMax回归
我们上面讲解了一维和多维二分类,其实对于多分类,只是增加了函数个数作为维度。
如上图,比如对于一个x,三个函数的结果为1.2、4.1、1.9,那么便可根据后续操作对其进行回归或者分类。这三个函数可能是线性的,也可能是非线性的,如logistic回归。
选择均方误差(MSE)作为损失函数
对其使用最小二乘法/梯度下降法进行计算得出参数。
标签类别的表示
对于分类问题,即经过一个映射f 输出是一个离散的集合,我们有两种表示标签的方法:
对于第一种方法,类别之间有了远近的关系,因此我们一般使用第二种表示法。 每一个维度只有0-1两种结果。
我们只需看输出的某个点里哪一类代表的点更近即可进行分类。
概率角度:
我们上面提到,对于二分类任务,伯努利分布更加适合,因此我们引入了logistic回归。
而当面对多分类任务(K>2)时,我们选择 统筹 multinoulli/categorical 分布
回顾统筹 multinoulli/categorical 分布
统筹分布学习:
- 令 采取以下形式:
明显地, 并且
- 给定一个测试输入x,对每一个k=1,2,…,K,估计
- 当x属于第K个类时,取很大的值
- 当x属于其他类时,取很小的值
- 由于 是一个(连续的)概率,我们需要将它转换为符合分类的离散值。
Softmax函数
下列函数被称为Softmax函数:
- 如果 对于所有 都成立,则对于所有的 有 但其值小于1。
- 如果 对于所有 都成立,则对于所有的 有 。
同样,我们最大条件似然得到交叉熵误差函数:
注:
对于每个K,只有一个非0项(因为如(0,0,0,1,0,0))
计算梯度
向量-矩阵形式
训练和测试
随机梯度下降
在整个训练集中,最小化成恨函数的计算开销非常大,我们通常将训练集划分为较小的子集或 minibatches 然后在单个 minibatches (xi,yi)上优化成本函数,并取平均值。
引入偏置bias
到目前为止,我们已经假设
其中
有时偏置项可以引入到 中,参数成为{w,b}
得到
正则化通常只应用在w上
Softmax过度参数化
有假设
新的参数 会得到同样的预测结果
最小化交叉熵函数可以有无限多个解,因为:
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
14-1715585436800)]
[外链图片转存中…(img-4Bs4QlZD-1715585436801)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!