Scrapy还提供了更多高级功能,如自动处理Cookies和Sessions、自动处理重定向、自动调度爬虫等。
2. 解析库
解析库用于分析和提取网页中的数据,将复杂的HTML或XML文档转换为易于操作的数据结构。以下是一些常用的解析库。
2.1. Beautiful Soup
Beautiful Soup是一个Python库,用于从HTML或XML文档中提取数据。它提供了一套简单而灵活的API,使得解析网页变得非常容易。以下是一个使用Beautiful Soup解析HTML的例子:
from bs4 import BeautifulSoup
html_doc = """
<html>
<head>
<title>Example</title>
</head>
<body>
<div class="content">
<h1>Welcome to Example</h1>
<p>Some text here</p>
</div>
</body>
</html>
"""
soup = BeautifulSoup(html_doc, 'html.parser')
print(soup.title.text)
print(soup.find('div', {'class': 'content'}).h1.text)
Beautiful Soup还提供了其他功能,如查找元素、提取属性、处理文本等。
2.2. lxml
lxml是一个高性能的Python库,用于处理XML和HTML文档。它提供了一个简洁的API,使得解析和修改文档变得容易。以下是一个使用lxml解析HTML的例子:
from lxml import etree
html_doc = """
<html>
<head>
<title>Example</title>
</head>
<body>
<div class="content">
<h1>Welcome to Example</h1>
<p>Some text here</p>
</div>
</body>
</html>
"""
tree = etree.HTML(html_doc)
print(tree.xpath('//title/text()'))
print(tree.xpath('//div[@class="content"]/h1/text()'))
lxml还提供了其他功能,如遍历文档、提取属性、处理命名空间等。
3. 数据存储库
数据存储库用于将爬取的数据存储到本地或远程数据库中,以备后续处理和分析。以下是一些常用的数据存储库。
3.1. SQLite
SQLite是一个轻量级的关系型数据库,它使用单个文件存储整个数据库,非常适合小规模的数据存储和查询。以下是一个使用SQLite存储数据的例子:
import sqlite3
conn = sqlite3.connect('example.db')
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS data
(id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT,
content TEXT)
''')
cursor.execute('INSERT INTO data (title, content) VALUES (?, ?)', ('Example', 'Some text here'))
conn.commit()
conn.close()
SQLite还提供了其他功能,如查询数据、更新数据、事务处理等。
3.2. MongoDB
MongoDB是一个NoSQL数据库,它使用文档存储数据,非常适合大规模和非结构化的数据存储。以下是一个使用MongoDB存储数据的例子:
from pymongo import MongoClient
client = MongoClient('mongodb://localhost:27017/')
db = client['example']
collection = db['data']
data = {'title': 'Example', 'content': 'Some text here'}
collection.insert_one(data)
MongoDB还提供了其他功能,如查询数据、更新数据、索引、聚合操作等。
4. 其他常用库
除了上述的网络请求库、解析库和数据存储库,还有许多其他常用的库可以加强爬虫的功能。
- Scrapy-Redis:一个基于Redis的分布式爬虫框架,可以实现分布式爬虫的调度和队列管理。
- Selenium:一个用于自动化浏览器操作的库,用于处理JavaScript渲染的网页。
- Pandas:一个用于数据分析和处理的库,可以对爬取的数据进行清洗、转换和分析。
- NumPy:一个用于科学计算和数值操作的库,可以用于对爬取的数据进行统计和数值计算。
- Scikit-learn:一个用于机器学习和数据挖掘的库,可以对爬取的数据进行建模和预测。
案例
当然,请看下面的三个案例:
案例1:使用Requests库获取网页内容
import requests
# 发送GET请求
response = requests.get("https://www.example.com")
print(response.text)
上述代码使用Requests库发送GET请求,并打印出获取到的网页内容。
案例2:使用Beautiful Soup解析HTML
from bs4 import BeautifulSoup
如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费**学习**大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
### 一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
![](https://img-blog.csdnimg.cn/img_convert/9f49b566129f47b8a67243c1008edf79.png)
### 二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
![](https://img-blog.csdnimg.cn/img_convert/8c4513c1a906b72cbf93031e6781512b.png)
### 三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
![](https://img-blog.csdnimg.cn/img_convert/eec417a3d4d977b313558a11d3c13e43.png)
### 四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
![](https://img-blog.csdnimg.cn/img_convert/ec690501ea1dbe2cb209cbf4013c2477.png)
![](https://img-blog.csdnimg.cn/img_convert/3eaeaa6747419c9d86c72e0d10d0a6a2.png)
### 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
![](https://img-blog.csdnimg.cn/img_convert/252731a671c1fb70aad5355a2c5eeff0.png)
### 五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
![](https://img-blog.csdnimg.cn/img_convert/6c361282296f86381401c05e862fe4e9.png)
成为一个Python程序员专家或许需要花费数年时间,但是打下坚实的基础只要几周就可以,如果你按照我提供的学习路线以及资料有意识地去实践,你就有很大可能成功!
最后祝你好运!!!
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**