膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

本文概述了Hadoop系统中作业的提交流程、作业调度机制、NodeManager和MRAppMaster的作用,以及YARN子系统提供的计算框架,包括MapReduce的发展与HDFS的架构。还涉及了Hadoop的容错、安全和人机交互,以及系统的部署和启动,最后提到了Spark的优化与相关资源的完整体系化学习资料。
摘要由CSDN通过智能技术生成

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第5章Hadoop作业的提交,在计算机上启动运行一个应用,首先要把这个应用作为“作业(Job)”提交给计算机系统。

一般这是通过键入一个命令行或点击某个图标而实现的,操作很简单。但是,如果我们要考察在提交作业时系统内部的流程,那就比较复杂了。学过操作系统的人对单机上的作业提交过程会有比较深入的了解,不过那不是本书所要关注的问题。本书所关注的是,在通常运行于计算机集群的 Hadoop系统上,作业是怎样提交的。

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第6章作业的调度与指派,

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第7章NodeManager与任务投运,用户提交的作业为 ResourceManager接受并得到调度运行之后,RM会设法将其投入运行。但是一 个 作 业 (Job 或 App)通常都包含着很多任务,比方说N个MapTask和1个ReduceTask,所以作业的投运终究会分解成许多任务的投运。

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第8章MRAppMaster与作业投运,

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第9章YARN子系统的计算框架,Hadoop中 YARN 子系统的使命是为用户提供大数据的计算框架。早期的 Hadoop,甚至早期的 YARN 都只提供一种计算框架,那就是 MapReduce。如前所述,MapReduce是一种极简的,然而在很多情况下颇为有效的计算模型和框架。

但是Hadoop的MapReduce框架要求使用者提供用Java语言编写的 Mapper和 Reducer,而 App本身则虽然简单但也要求用Java编写,这又使有些用户感到有点不便,而且 MapReduce这个模式也过于简单和单调。所以 Hadoop后来有了一些新的发展,除 MapReduce外又提供了称为Chain和Stream的计算框架。一来使用户不必非得用Java编程;二来更允许用户利用 Linux上的 Utility工具软件搭建更像“数据流”的结构。本章介绍 YARN 子系统为用户提供的计算框架,当然主要还是传统的 MapReduce框架。

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第10章MapReduce框架中的数据流

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第11章Hadoop的文件系统HDFS

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第12章HDFS的DataNode

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第13章DataNode与NameNode的互动,数据节点DataNode在运行中会与三种对端有互动。

第一种是NameNode,如前所述,对于数据块的存储地点,虽然最初是由NameNode分配和指定的,但相关的信息最终来自DataNode的报告。

第二种是用户的App(包括Shell),用户的App可以存在于集群内的任何节点上,不过那是在独立的JVM上,即使与DataNode同在-一个节点上也互相独立;然而真正把数据存储在DataNode上或从DataNode读取数据的却是App(或Shell)。

第三种是集群中别的DataNode,就是说DataNode与DataNode之间也会有通信和互动,这主要来自数据块复份replica的传输和转储。

数据块在HDFS文件系统中的存储是“狡兔三窟”的,一个数据块要分别存储在若干不同的DataNode.上,但是系统并不要求App把–个数据块分别发送给几个DataNode,而只需发送给其中的一个,后面就是DataNode之间的事了。

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第14章DataNode间的互动

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第15章HDFS的文件访问

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第16章Hadoop的容错机制

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第17章Hadoop的安全机制

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第18章Hadoop的人机界面,供人们直接使用的系统须提供人机交互的手段,或称“人机界面(UserInterface)”即 UI,更确切地说是“Man-MachineInterface”,使人们得以使用和管理这个系统或平台。比

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第19章Hadoop的部署和启动,系统的安装部署本来就不是小事,对于大规模的集群就更不用说了。Hadoop 一般都是在集群_上运行,但是要运维人员跑到每一台机器上去部署或启动却是不现实的,得要能在一个集中的控制台节点上完成Hadoop的部署和启动(还有关机)才好,这当然又会使整个过程增加许多技术上的复杂度。既然是在一个集中的控制台节点上部署和启动一个集群,那当然就离不开远程操作,所以Linux的远程操作工具ssh和rsyne就成了整个过程的基石。之所以是ssh和rsync,而不是别的远程操作工具(比方说Telnet),是因为这二者的安全性比较好,通信中采用了较强的加密手段。

膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

第20章Spark的优化与改进

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

95%以上大数据知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值