Python 周期任务神器,太实用了

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

Python 实用宝典

import schedule
import time

def job():
print(“I’m working…”)

每十分钟执行任务

schedule.every(10).minutes.do(job)

每个小时执行任务

schedule.every().hour.do(job)

每天的10:30执行任务

schedule.every().day.at(“10:30”).do(job)

每个月执行任务

schedule.every().monday.do(job)

每个星期三的13:15分执行任务

schedule.every().wednesday.at(“13:15”).do(job)

每分钟的第17秒执行任务

schedule.every().minute.at(“:17”).do(job)

while True:
schedule.run_pending()
time.sleep(1)


可以看到,从月到秒的配置,上面的例子都覆盖到了。不过如果你想只运行一次任务的话,可以这么配:



Python 实用宝典

import schedule
import time

def job_that_executes_once():
# 此处编写的任务只会执行一次…
return schedule.CancelJob

schedule.every().day.at(‘22:30’).do(job_that_executes_once)

while True:
schedule.run_pending()
time.sleep(1)


![在这里插入图片描述](https://img-blog.csdnimg.cn/6c9bf1ebe3be45ffb8d9a758bed19089.png)


### 参数传递


如果你有参数需要传递给作业去执行,你只需要这么做:



Python 实用宝典

import schedule

def greet(name):
print(‘Hello’, name)

do() 将额外的参数传递给job函数

schedule.every(2).seconds.do(greet, name=‘Alice’)
schedule.every(4).seconds.do(greet, name=‘Bob’)


### 获取目前所有的作业


如果你想获取目前所有的作业:



Python 实用宝典

import schedule

def hello():
print(‘Hello world’)

schedule.every().second.do(hello)

all_jobs = schedule.get_jobs()


![在这里插入图片描述](https://img-blog.csdnimg.cn/e8b30b6715f74fc38b4d41cf4f8fbb15.png)


### 取消所有作业


如果某些机制触发了,你需要立即清除当前程序的所有作业:



Python 实用宝典

import schedule

def greet(name):
print(‘Hello {}’.format(name))

schedule.every().second.do(greet)

schedule.clear()


### 标签功能


在设置作业的时候,为了后续方便管理作业,你可以给作业打个标签,这样你可以通过标签过滤获取作业或取消作业。



Python 实用宝典

python插件/源码/素材加Q群:903971231####
import schedule

def greet(name):
print(‘Hello {}’.format(name))

.tag 打标签

schedule.every().day.do(greet, ‘Andrea’).tag(‘daily-tasks’, ‘friend’)
schedule.every().hour.do(greet, ‘John’).tag(‘hourly-tasks’, ‘friend’)
schedule.every().hour.do(greet, ‘Monica’).tag(‘hourly-tasks’, ‘customer’)
schedule.every().day.do(greet, ‘Derek’).tag(‘daily-tasks’, ‘guest’)

get_jobs(标签):可以获取所有该标签的任务

friends = schedule.get_jobs(‘friend’)

取消所有 daily-tasks 标签的任务

schedule.clear(‘daily-tasks’)


![在这里插入图片描述](https://img-blog.csdnimg.cn/56a675e20655461f99d81953a41f1a98.png)


### 设定作业截止时间


如果你需要让某个作业到某个时间截止,你可以通过这个方法:



Python 实用宝典

import schedule
from datetime import datetime, timedelta, time

def job():
print(‘Boo’)

每个小时运行作业,18:30后停止

schedule.every(1).hours.until(“18:30”).do(job)

每个小时运行作业,2030-01-01 18:33 today

schedule.every(1).hours.until(“2030-01-01 18:33”).do(job)

每个小时运行作业,8个小时后停止

schedule.every(1).hours.until(timedelta(hours=8)).do(job)

每个小时运行作业,11:32:42后停止

schedule.every(1).hours.until(time(11, 33, 42)).do(job)

每个小时运行作业,2020-5-17 11:36:20后停止

schedule.every(1).hours.until(datetime(2020, 5, 17, 11, 36, 20)).do(job)


截止日期之后,该作业将无法运行。


立即运行所有作业,而不管其安排如何


如果某个机制触发了,你需要立即运行所有作业,可以调用 schedule.run\_all() :



Python 实用宝典

import schedule

def job_1():
print(‘Foo’)

def job_2():
print(‘Bar’)

schedule.every().monday.at(“12:40”).do(job_1)
schedule.every().tuesday.at(“16:40”).do(job_2)

schedule.run_all()

立即运行所有作业,每次作业间隔10秒

schedule.run_all(delay_seconds=10)


### 3.高级使用


装饰器安排作业


如果你觉得设定作业这种形式太啰嗦了,也可以使用装饰器模式:



Python 实用宝典

from schedule import every, repeat, run_pending
import time

此装饰器效果等同于 schedule.every(10).minutes.do(job)

@repeat(every(10).minutes)
def job():
print(“I am a scheduled job”)

while True:
run_pending()
time.sleep(1)


![在这里插入图片描述](https://img-blog.csdnimg.cn/769965960c05471fb8da13b245aa0564.png)


### 并行执行


默认情况下,Schedule 按顺序执行所有作业。其背后的原因是,很难找到让每个人都高兴的并行执行模型。


不过你可以通过多线程的形式来运行每个作业以解决此限制:



Python 实用宝典

import threading
import time
import schedule

def job1():
print(“I’m running on thread %s” % threading.current_thread())
def job2():
print(“I’m running on thread %s” % threading.current_thread())
def job3():
print(“I’m running on thread %s” % threading.current_thread())

def run_threaded(job_func):
job_thread = threading.Thread(target=job_func)
job_thread.start()

schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)

while True:
schedule.run_pending()
time.sleep(1)


### 日志记录


Schedule 模块同时也支持 logging 日志记录,这么使用:



Python 实用宝典

import schedule
import logging

logging.basicConfig()
schedule_logger = logging.getLogger(‘schedule’)

日志级别为DEBUG

schedule_logger.setLevel(level=logging.DEBUG)

def job():
print(“Hello, Logs”)

schedule.every().second.do(job)

schedule.run_all()

schedule.clear()


![在这里插入图片描述](https://img-blog.csdnimg.cn/98baca22ee734f9aab193a9112e29e57.png)


效果如下:



DEBUG:schedule:Running *all* 1 jobs with 0s delay in between
DEBUG:schedule:Running job Job(interval=1, unit=seconds, do=job, args=(), kwargs={})
Hello, Logs
DEBUG:schedule:Deleting *all* jobs

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值