导入库很简单——你只需在代码顶部写上import libraryname
,就可以开始使用该库提供的所有内容了。
一些常见的例子包括import pandas
用于数据科学工具,import matplotlib
用于绘图和可视化,或者import tensorflow
用于机器学习。
这些包包含了宝贵的类、函数和对象,如果你自己编写这些代码将会花费很长时间。它们不仅节省了你的时间和精力,还使你的程序变得更加健壮和强大。
通过使用这些现成的包,你可以利用已经过优化和测试的代码,避免重复造轮子。这意味着你可以专注于你的应用程序的核心功能和创新,而不是浪费时间在基础的、通用的任务上。
此外,这些包通常都有详尽的文档和活跃的社区支持,这使得学习和使用它们变得更加容易。无论你遇到什么问题,都有可能有人已经解决了类似的问题,并且分享了解决方案。
利用 Python 生态系统中的第三方库和模块,可以让你更高效地开发程序,同时也能保持代码的高质量和可维护性。这正是 Python 语言如此受欢迎和强大的原因之一。
避免使用全局变量
在编写 Python 代码时,要抵制在代码中到处使用全局变量的诱惑。虽然它们看起来很方便,但全局变量往往会制造出混乱的纠缠网络,这将在后期给你带来麻烦。
更好的做法是通过参数显式地将数据传递给函数,并让函数返回其他代码部分需要访问的值。这样可以局部化变量和输入/输出,使代码更加清晰、模块化。
当然,有些情况下你可能需要一些模块级别的常量或集中式的数据对象。但总的来说,尽可能限制全局变量的使用会迫使你对程序的架构和交互进行更彻底的思考。
遵循“最小化全局变量”的原则将在后续的调试和维护中带来好处。这样做可以减少代码中潜在的错误,使得代码更容易理解和修改。当你需要修改或扩展程序的功能时,你会发现遵循这一原则的代码更容易维护和扩展。
下面我们来看一个代码示例:
total = 0 def add_to_total(value): global total total += value def main(): add_to_total(5) add_to_total(10) print("Total (using global):", total) main() # Better practice: Using function parameters and return values def add(a, b): return a + b def main_with_parameters(): result1 = add(5, 10) result2 = add(result1, 20) print("Result (using parameters):", result2) main_with_parameters()
使用列表推导式
如果你在寻找一种优雅且快速生成新列表的方法,那么 Python 的列表推导式(list comprehensions)是你的不二之选。这种结构以其简洁的一行代码,将传统的 for 循环和 append 操作压缩成易于阅读且高效的表达式,深受喜爱。
在内部,列表推导式通过利用优化的代码避免了传统循环的性能损失。对于小列表来说,速度提升可能看起来微不足道,但在处理大规模数据时,这种提升就变得相当明显了。此外,列表推导式通过一次性分配列表,而不是逐步增长,因此对内存的消耗也远远小于传统方法。
在以优雅代码著称的 Python 语言中,列表推导式作为一种特别优美的构造而脱颖而出。一旦你将它加入到你的 Python 工具箱中,你会发现自己在各种场合都会倾向于使用这些快速的迭代器。
让我们来看下面的代码示例:
# 例 1:使用 for 循环创建正方形列表 squares = [] for num in range(1, 6): squares.append(num ** 2) print("square (using a for loop):", squares) # 例 2:使用列表理解创建相同的正方形列表 squares_comprehension = [num ** 2 for num in range(1, 6)] [num ** 2 for num in range(1, 6) print("Squares (using a list comprehension):", squares_comprehension) # 例 3:使用 for 循环从列表中筛选偶数 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 偶数 even_numbers = [] for num in numbers: if num % 2 == 0: even_numbers.append(num) print("Even Numbers (using a for loop):", even_numbers) # 例 4:使用列表理解从同一列表中筛选偶数 even_numbers_comprehension = [num for num in numbers if num % 2 == 0] (如果 num % 2 == 0) print("Even Numbers (using a list comprehension):", even_numbers_comprehension)
使用生成器
对于处理超大文件或数据流等资源密集型任务,生成器可以成为 Python 开发者的得力助手。生成器会根据需求惰性地产生数据,而不是一次性实现所有内容。
当你不需要一开始就获得全部结果集时,“惰性评估”风格非常有用。例如,处理来自百万记录文件的每一行,或读取无限的网络数据流。
使用生成器时,你会使用yield
关键字而不是return
。每次对生成器调用next
都会计算出另一个值。这种增量生成和处理大大节省了内存使用。
实现自己的生成器或使用内置的 Python 生成器,如range
,可以显著提升性能。迭代变得快速且轻量,无需昂贵的一次性实现。
让我们来看下面的代码示例:
# 例 1:创建一个无限数列生成器 def infinite_numbers(): num = 1 while True: yield num num += 1 # 使用无限数字生成器 numbers_gen = infinite_numbers() for _ in range(5): print(next(numbers_gen)) # 一次生成一个数字 # 例 2:创建一个生成器来读取和处理大文件中的行数 def process_large_file(file_path): with open(file_path, 'r') as file: for line in file: yield line.strip() # 在不将整个文件加载到内存的情况下,一次只读取一行 # 使用 process_large_file 生成器 large_file_path = 'large_file.txt' # 使用 process_large_file 生成器 lines_gen = process_large_file(large_file_path) for _ in range(3): line = next(lines_gen) print("line:", line) # 例 3:使用内置生成器 - range() for num in range(1, 6): print(num) # 一次生成一个数字,无需在内存中创建列表
为了帮助大家更好的学习网络安全,我给大家准备了一份网络安全入门/进阶学习资料,里面的内容都是适合零基础小白的笔记和资料,不懂编程也能听懂、看懂这些资料!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
CSDN大礼包:《黑客&网络安全入门&进阶学习资源包》免费分享
现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!