这种做法的问题是太!有!问!题!啦!那下面跟着我来看下一个正确的思考逻辑是什么吧!
1、什么是“搜索”功能?
首先我们看下“搜索”功能在电商APP中的定位是什么吧!
1 | 用户访问app动线
一个综合电商的健康程度,可以从首页“搜索框”的点击率来略窥一二。
想一想,一个想买“追风筝的人”的用户的购买转化率和一个随手打开APP的用户的购买转化率,必然前者要高很多很多啊。也就是说搜索入口点击量越高,说明健康程度越高。一般电商的搜索栏的点击比例可以达到1/2以上。由此可见搜索功能的重要性。
不过,随着消费升级和内容电商的崛起,这个定律也在变化,因为用户的行为慢慢的产生了分离。原来用户访问电商的意愿更加倾向于buying,也就是单纯的购买。现在用户的buying和shoping的目的分离,用户访问电商app的目的不再仅仅是买东西,很多时候也是单纯的逛一逛。
总之,搜索产品线满足着“有明确购买意愿”场景,承载这电商app中最重的一部分流量。
2 | “搜索”功能的关键指标
搜索是很具有“工具属性”的一个功能。
工具属性:用户有一个goal,需要一个工具来帮助他用最小的成本并最高效的达到这个goal。比如:用户想从北京去成都,飞机、火车、自行车都是工具。
衡量工具是否好用的标准有好多,今天主要讲使用成本。比如:坐飞机贵,那它的金钱使用成本高;比如:自行车慢,那它的时间成本高,等等。
那用户“搜索”一个产品,他的使用成本有哪些呢?
从上图用户的使用流程可以看到:用户的搜索需求链可以粗分为5步。因为最后两步“进入单品页查看详情”“加入购物车”和商品信息、单品页展示相关,所以我们主要研究前3步。
前3步衡量的关键指标分别是:搜索功能的使用率、搜索输入页转化率、搜索结果点击率。
当然衡量指标不是唯一的,比如:在搜索结果页的衡量指标可以是单品的点击率,当然也可以是单品的购买率~
下面我们将针对三大功能模块“搜索入口”、“搜索输入页”、“搜索结果页”来分别讨论PM的设计要点。
3 | “搜索入口”设计要点
搜索入口的关键指标是这个功能的使用率,目前搜索入口栏的视觉样式已经趋同,设计时候采用search bar/单独的search icon已经比较主流了。
在这种情况下,提高搜索入口的使用率,有两个要点:
要点1:寻找频道增加搜索入口
错误方式:我在所有的卖场页面都加上,有比没有好吧,让用户想搜就搜,还符合尼尔森一致性的原则呢。
搜索入口有两种模式:
- 模式一:普通型,搜索模块是对所有商品进行搜索;
- 模式二:指定型,搜索模块只针对指定分类、或卖场内的商品进行搜索。
所以思考这个问题时候需要考虑你的频道或者卖场的特性,然后选择符合的搜索入口模式。
- 如果你的卖场商品数量较多,并且品类综合,采用普通型搜索模块。一般这种综合型的卖场流量大,用户意向分散,使用普通型搜索模块即可。比如:首页、比如大促落地页等。
- 如果你的卖场商品数量较多,并且品类单一,采用指定型搜索模块。指定类目的卖场,比如:生鲜卖场、图书馆等,需要在搜索模块上增加类型。也就是说用户在图书馆里面的任何搜索,都应该是书籍相关的。又或者是满100减10的卖场中,搜索到的商品也应该是满足这个促销条件的。
- 如果你的卖场商品数量较少,不要使用搜索模块。比如:榜单、少商品的卖场等,如果用户搜索后召回的商品数量极少,简直是搜索体验的噩梦。有这个模块还不如没有哇,真是的。
- 如果你的卖场品类用户无法感知,不要使用搜索模块。推荐清单就是一个例子,用户无法感知到这个集合是什么样子的。可能这个用户A比较喜欢图书、女装,换了一个用户后,品类却完全不同。
要点2:增加单页面内搜索入口的曝光次数
这个要点需要在交互层面注意,不要让你的搜索模块仅仅出现在首屏。在用户下滑浏览过程中也需要看到搜索入口,可以采用一个吸顶的搜索栏,或者在用户下滑过程中将搜索栏缩小到某一个位置。总之,要保证实时可见。
2、“搜索输入页”设计要点
搜索输入页有两个状态,一个是刚进入时候的默认状态,另外一个是用户已经开始输入时候的输入状态。
要点1:“搜索输入页”的默认状态
默认状态承载了两个任务:
(1)对于用户:帮助用户快速输入
用户进入搜索输入页,应该立即键盘弹出并且输入框是focus状态,保证用户无需其他点击,直接输入即可。另外需要增加快捷搜索词入口,展示5~10个历史搜索词,方便用户快速键入。
(2)对于业务:增加cross sale
进入搜索输入页的用户,都具有比较明确的购买意图,可以在搜索页增加一些模块,提高相关性购买。比如:热门搜索模块、比如推荐搜索词模块等。
要点2:“搜索输入页”的输入状态
在输入状态下,需要节省用户的输入时间,快速进入搜索结果页。
所以需要有如下功能:
(1)搜索词匹配:
比如:输入英文“hah”可以转换成中文“哈哈”,并且识别出我的关键词是哈哈哈。搜索建议功能是满足用户只记得部分关键词等的模糊搜索场景,这一个部分主要是技术同学主R的~
PM更加注意在交互和视觉上进行命中态和非命中态的区分,比如:上文中的“hah”就应该展示成命中态。另外如果搜索词完全命中和部份命中,也应该在样式上进行区分。
(2)帮助用户快速定位搜索词
- 提供搜索词相关的信息:比如显示搜索结果数量、商品数量等。
- 搜索结果信息前置从而缩小结果范围: 比如搜索词属性、标签等。
3、“搜索结果页”设计逻辑
消费者购买决策5阶段模型
在介绍搜索结果页之前,我们来看下知识点,消费者购买决策5阶段模型(谁的小眼睛还没有看老师丷哈~):
- 问题认知:天气热了,看到同事穿了条破洞牛仔裤,小王看了看自己裤子有点low,那想就换一条吧。
- 信息搜索:小王为了买裤子,看了各种裤子,黄色、白色、大牌的、便宜的。
- 方案评估:经过对比,小王觉得裤子A、B、C不错。
- 购买决策:考虑到工资还没发,房贷还没还,小王选择了最便宜的C裤子。
- 购后行为:C裤子收货之后,特别好看,不穿很平凡穿上吴亦凡~小王将裤子推荐给小李,并给商家一个五星好评,赞赞赞。
在搜索结果页中,主要帮助用户完成决策模型中的2、3、4三个阶段(哦呼,任务有点重呢)
那应该如何做呢?
要点一:信息搜索——用户使用的是中心路径还是边陲路径呢?
- 中心线索(中心路径):与目标直接相关的线索,一般基于判断分析。比如:手机的中心线索是CPU主频、屏幕大小、轻薄程度、外观如何……通过此路径的态度转变和思考有关。消费者对最重要的产品和服务信息,认真分析和思考。在消费者有充分的动机、能力和机会时,才会使用中央路径。
- 外周线索(边陲路径):和目标无关,但是可能带来间接证明。比如:手机的外周线索是哪个国家产的呀、谁代言的、买的人多不多等等。通过此路径的态度转变和思考无关。
所以我们知道,用户在进行信息汇总的时候,有两种方式:一种是中心线索,一种是外周线索。
采用哪种方式,和用户的画像、动机、购买的品类是有很大关系的~比如:一个女性顾客在购买手机时候,可能更加偏向于外周线索,如:谁代言的、谁在用、外形好不好看等。而并不会去仔细研究一个手机的各种复杂的参数。
这就要求PM在设计搜索结果页的时候,要同时兼顾到用户的中心路径还有边陲路径,并且根据不同的品类,进行两个路径的权重分配。
所以可以知道,搜索其实是一个精细化运营的事情,不同品类的决策方式会有差别。
那回到搜索结果页的设计上,有哪些通用的方法论么?
(1)信息广度:商品的数量、召回准确度
用户输入一个query,召回的商品准确性,是一个技术指标,需要推动技术从策略上进行不断优化。除此之外,在场景上,也有扩充信息广度的方法。
1)搜索无结果情况
- 混合词:“啦啦啦啦啦啦啦连衣裙”就是一个无结果的搜索词。针对这样的搜索词可以进行拆词处理,拆解出有意义的“连衣裙”,并在搜索结果展示“连衣裙”的商品。
- 错误词:“链衣群”就是一个意图明确,但是输入错误的词,需要联合技术团队进行纠错处理。纠正道正确的“连衣裙”。
- 无网络情况…
2)搜索结果过少情况
- 结果不足:增加“你是不是要找”模块,帮助用户进行关联搜索。
- 缺货、断货…
总之,定位到各种无结果/少结果的情况,进行信息广度的扩充。
(2)信息优先级:商品排列顺序
在搜索信息页中可以承载了很多模块,比如:商家广告、推荐模块。所以搜索页的信息架构很关键。
1)信息直达:分析用户意图,给用户快速通道
信息直达是指可以分析出用户的意图,并给出快捷入口。比如:用户搜索“魔鬼经济学”,如果通过数据分析,绝大多数搜索这个词的用户都是购买“魔鬼经济学1~3”套装书,而不是某一本书的话,那就可以直接在顶部增加一个信息直达模块。
或者用户输入某一个品牌名“小米”,这个时候其实用户的意图是看“小米”这个品牌下的所有商品。所以,如果有一个品牌直达模块,会让用户更佳快速的找到结果。
最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!