自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 (TII论文概要)MFANet:用于跨粒度少样本无缝钢管表面缺陷分割的多特征聚合网络

本文提出MFANet网络解决无缝钢管(SST)内表面缺陷少样本分割问题。针对缺陷样本稀少和细粒度标注耗时等挑战,创新性地提出跨粒度少样本缺陷分割(CG-FSDS)范式,通过在粗粒度标注数据上学习并泛化到细粒度SST缺陷分割。MFANet采用多特征聚合策略,包含三元组原型模块、支持注意力模块等核心组件,在自建的CGFSDS-9基准测试上取得最优性能(1-shot mIoU 75.45%)。实验表明该方法有效缓解了数据稀缺问题,为工业缺陷检测提供了新思路。

2026-01-18 17:14:42 591

原创 lateinit property envs_dirs has not been initialized,在pycharm配置conda虚拟环境时出现的问题

摘要:本文介绍了在PyCharm中配置Python解释器环境的方法。用户可以选择主目录下的python.exe文件配置主环境,或使用./envs文件夹中的文件配置自定义环境(如MFA的conda环境)。配置完成后,所有相关库都会被正确调用到PyCharm项目中。该方案解决了Python环境配置问题,确保开发环境正常运行。

2026-01-10 14:31:21 2251

【工业视觉检测】基于多特征融合网络的少样本无缝钢管表面缺陷跨粒度分割方法研究

内容概要:本文提出了一种新的表面缺陷分割范式——跨粒度少样本缺陷分割(CG-FSDS),旨在解决无缝钢管(SSTs)内表面缺陷样本稀疏、类别有限的问题。传统方法依赖精细标注数据,而本文提出的CG-FSDS通过在粗粒度标注的金属表面缺陷数据上训练模型,迁移学习至细粒度标注的SSTs缺陷分割任务中,显著降低了对大量精细标注数据的依赖。为此,作者提出了多特征聚合网络(MFANet),引入三元原型模块(TPM)、支持注意力模块(SAM)等组件,有效提升了分割性能。同时构建了首个跨粒度基准数据集CGFSDS-9,包含三个粗粒度类别和六个细粒度SSTs缺陷类别,验证了方法的有效性。实验表明,MFANet在多个指标上优于现有少样本分割方法,具有良好的泛化能力和实际应用价值。; 适合人群:从事工业视觉检测、机器学习、图像分割研究的科研人员与工程师,尤其是关注少样本学习、跨领域迁移、金属材料缺陷检测的技术人员;具备深度学习和计算机视觉基础的研究生或高年级本科生。; 使用场景及目标:①应用于无缝钢管、航空发动机叶片等稀缺缺陷样本的工业质检场景;②推动少样本语义分割技术在跨粒度、跨域条件下的理论发展与工程落地;③为缺乏标注数据的工业场景提供高效、可推广的自动化缺陷识别解决方案。; 阅读建议:建议结合网络结构图(如Fig. 2)深入理解MFANet的多分支特征提取与融合机制,重点关注TPM、SAM、SPM等模块的设计动机与实现细节,并通过复现CGFSDS-9上的实验对比结果来评估方法优势。同时可延伸思考该范式在其他制造业领域的适用性。

2026-01-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除