如何搭建spark yarn模式的集群

1. 环境准备

  • 节点规划:假设有三个节点,分别为 masterslave1 和 slave2master 节点同时作为 Hadoop 的 NameNode 和 ResourceManager,slave1 和 slave2 作为 DataNode 和 NodeManager。
  • 安装 JDK:确保所有节点都安装了 Java 8 或更高版本,并且配置好 JAVA_HOME 环境变量。

# 示例:设置 JAVA_HOME
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
export PATH=$PATH:$JAVA_HOME/bin

  • 配置 SSH 免密登录:在 master 节点上生成 SSH 密钥,并将公钥分发到所有节点,包括 master 自身。
# 在 master 节点生成密钥
ssh-keygen -t rsa
# 将公钥复制到所有节点
ssh-copy-id master
ssh-copy-id slave1
ssh-copy-id slave2

2. 安装和配置 Hadoop

2.1 下载和解压 Hadoop

从 Apache 官网下载 Hadoop 3.x 版本,并解压到指定目录。

wget https://downloads.apache.org/hadoop/common/hadoop-3.3.4/hadoop-3.3.4.tar.gz
tar -zxvf hadoop-3.3.4.tar.gz -C /usr/local
cd /usr/local
ln -s hadoop-3.3.4 hadoop
2.2 配置 Hadoop 环境变量

在 /etc/profile 或 ~/.bashrc 中添加以下内容:

export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

使配置生效:

source /etc/profile
2.3 配置 Hadoop 核心文件
  • core-site.xml
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://master:9000</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/usr/local/hadoop/tmp</value>
    </property>
</configuration>

  • hdfs-site.xml

xml

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>/usr/local/hadoop/hdfs/namenode</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>/usr/local/hadoop/hdfs/datanode</value>
    </property>
</configuration>

  • mapred-site.xml

xml

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

  • yarn-site.xml

xml

<configuration>
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>master</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
</configuration>
2.4 配置从节点

在 $HADOOP_HOME/etc/hadoop/slaves 文件中添加从节点的主机名:

plaintext

slave1
slave2
2.5 格式化 NameNode

在 master 节点上执行以下命令:

bash

hdfs namenode -format
2.6 启动 Hadoop 集群

在 master 节点上启动 HDFS 和 YARN:

bash

start-dfs.sh
start-yarn.sh

3. 安装和配置 Spark

3.1 下载和解压 Spark

从 Apache 官网下载 Spark 3.x 版本,并解压到指定目录。

bash

wget https://downloads.apache.org/spark/spark-3.3.2/spark-3.3.2-bin-hadoop3.tgz
tar -zxvf spark-3.3.2-bin-hadoop3.tgz -C /usr/local
cd /usr/local
ln -s spark-3.3.2-bin-hadoop3 spark
3.2 配置 Spark 环境变量

在 /etc/profile 或 ~/.bashrc 中添加以下内容:

bash

export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

使配置生效:

bash

source /etc/profile
3.3 配置 Spark 核心文件
  • spark-env.sh

bash

export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export SPARK_EXECUTOR_CORES=2
export SPARK_EXECUTOR_MEMORY=2G
export SPARK_DRIVER_MEMORY=1G

  • spark-defaults.conf

plaintext

spark.master yarn
spark.submit.deployMode cluster
3.4 分发 Spark 到所有节点

将 Spark 目录复制到所有节点:

bash

scp -r /usr/local/spark slave1:/usr/local
scp -r /usr/local/spark slave2:/usr/local

4. 验证集群

在 master 节点上运行一个简单的 Spark 应用程序:

bash

spark-submit --class org.apache.spark.examples.SparkPi \
    --master yarn \
    --deploy-mode cluster \
    $SPARK_HOME/examples/jars/spark-examples_2.12-3.3.2.jar 10

如果应用程序成功运行并输出结果,则说明 Spark YARN 模式集群搭建成功。

5. 常见问题及解决方法

  • 网络问题:确保所有节点之间可以相互 ping 通,并且防火墙已开放必要的端口。
  • 权限问题:确保所有节点上的 Hadoop 和 Spark 目录具有正确的权限。
  • 配置问题:检查所有配置文件是否正确,特别是 core-site.xmlhdfs-site.xmlyarn-site.xml 和 spark-env.sh
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值