- 博客(3)
- 收藏
- 关注
原创 自然语言处理-基于Transformer实现机器翻译
原理:Transformer是一种基于注意力机制的深度学习模型,最初由Google在2017年提出。它在机器翻译任务中取得了很大成功,因为它能够在处理长距离依赖关系时表现优异,并且可以并行化处理。在机器翻译任务中,Transformer模型通常包括编码器和解码器两部分。编码器将源语言句子编码成一个上下文表示,解码器则根据这个上下文表示生成目标语言句子。
2024-06-26 10:49:33 724
原创 自然语言处理-机器翻译
例如,当𝑝𝑛𝑝𝑛固定在0.5时,随着𝑛𝑛的增大,0.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.960.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.96。具体来说,设词数为𝑛𝑛的子序列的精度为𝑝𝑛𝑝𝑛。举个例子,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,预测序列为𝐴𝐴、𝐵𝐵、𝐵𝐵、𝐶𝐶、𝐷𝐷,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0。
2024-06-26 10:04:51 756
原创 自然语言处理-前馈网络
1. 实验内容在实验3中,我们通过观察感知器来介绍神经网络的基础,感知器是现存最简单的神经网络。感知器的一个历史性的缺点是它不能学习数据中存在的一些非常重要的模式。例如,查看图4-1中绘制的数据点。这相当于非此即彼(XOR)的情况,在这种情况下,决策边界不能是一条直线(也称为线性可分)。在这个例子中,感知器失败了。图4-1 XOR数据集中的两个类绘制为圆形和星形。请注意,没有任何一行可以分隔这两个类。
2024-06-26 09:29:51 1083
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人