自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 自然语言处理-基于Transformer实现机器翻译

原理:Transformer是一种基于注意力机制的深度学习模型,最初由Google在2017年提出。它在机器翻译任务中取得了很大成功,因为它能够在处理长距离依赖关系时表现优异,并且可以并行化处理。在机器翻译任务中,Transformer模型通常包括编码器和解码器两部分。编码器将源语言句子编码成一个上下文表示,解码器则根据这个上下文表示生成目标语言句子。

2024-06-26 10:49:33 724

原创 自然语言处理-机器翻译

例如,当𝑝𝑛𝑝𝑛固定在0.5时,随着𝑛𝑛的增大,0.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.960.51/2≈0.7,0.51/4≈0.84,0.51/8≈0.92,0.51/16≈0.96。具体来说,设词数为𝑛𝑛的子序列的精度为𝑝𝑛𝑝𝑛。举个例子,假设标签序列为𝐴𝐴、𝐵𝐵、𝐶𝐶、𝐷𝐷、𝐸𝐸、𝐹𝐹,预测序列为𝐴𝐴、𝐵𝐵、𝐵𝐵、𝐶𝐶、𝐷𝐷,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0。

2024-06-26 10:04:51 756

原创 自然语言处理-前馈网络

1. 实验内容在实验3中,我们通过观察感知器来介绍神经网络的基础,感知器是现存最简单的神经网络。感知器的一个历史性的缺点是它不能学习数据中存在的一些非常重要的模式。例如,查看图4-1中绘制的数据点。这相当于非此即彼(XOR)的情况,在这种情况下,决策边界不能是一条直线(也称为线性可分)。在这个例子中,感知器失败了。图4-1 XOR数据集中的两个类绘制为圆形和星形。请注意,没有任何一行可以分隔这两个类。

2024-06-26 09:29:51 1083

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除