题目:
设 A 和 B 是两个字符串。我们要用最少的字符操作次数,将字符串 A 转换为字符串 B。这里所说的字符操作共有三种:
1.删除一个字符;2.插入一个字符;3.将一个字符改为另一个字符。
A,B 均只包含小写字母。
思路:
1.整体思路:
动态规划,对a,b处理到的当前字符进行删除/插入/修改操作
2.具体思路:
(1)设dp数组
dp[i][j]表示使得处理后的a数组前i项与b数组前j项完全对齐,此时需要的最少操作数。
若按照以上定义dp[0][5]代表a的第0项与b的前6项恰好对齐所进行的操作数,往前追溯会出现dp[-1][5]的情况。这里我们的解决方案是给数组多腾出一点空间,修改数组的定义,使dp[i][j]代表a数组的前i-1项与b数组的前j-1项完全对齐。dp[1][6]代表a的第0项与b的前6项恰好对齐所进行的操作数,往前追溯到dp[0][5]、d[0][6]、d[1][5],皆是合法操作。
(2)三种操作
1.删除/插入:
dp[i][j]=dp[i-1][j]+1;//往a数组插入;
dp[i][j]=dp[i][j-1]+1;//往b数组插入
2.修改
dp[i][j]=dp[i-1][j-1];//修改a数组或b数组
为了取得最优方案,需要对三种操作后的值进行大小比较,取最小值进行赋值。
AT:未经操作的dp初始值为0(当前处理的a,b数组均不为空的情况下)
代码展示: