题目:
小明要去一个国家旅游。这个国家有 N 个城市,编号为 1 至 N,并且有 M 条道路连接着,小明准备从其中一个城市出发,并只往东走到城市 i 停止。所以他就需要选择最先到达的城市,并制定一条路线以城市 i 为终点,使得线路上除了第一个城市,每个城市都在路线前一个城市东面,并且满足这个前提下还希望游览的城市尽量多。
现在,你只知道每一条道路所连接的两个城市的相对位置关系,但并不知道所有城市具体的位置。现在对于所有的 i,都需要你为小明制定一条路线,并求出以城市 i 为终点最多能够游览多少个城市。
思路:
1.思考:题目的最终目的是求出的是N个答案——任意城市为终点的路线中,可以经过的最多的点的数量。我们不禁开始思考,这n个答案是否有关联?我们可不可以通过部分点的ans[i]来更新部分点的ans[i],再来更新下一部分点的ans[i]......
2.根据上述思考我们要找到两个条件。
(1)最初可以用来更新其他点的点。(dl数组的初始化)
当点的“入度”为1时,ans[i]确定为1,因为没有点可以走向它。
(2)什么情况下可以用来更新其他点。(dl数组的更新)
当然是ans[i]确定的情况下。那什么时候可以保证ans[i]已经达到了最优呢?当然是抵达i点的路都已经遍历完了。进一步说也就是,直接抵达i点的路我们都走过了,这时rd[i]数组就发挥作用了.
代码展示: