自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 Ubuntu 22.04/20.04 深度学习环境配置:CUDA 11.x/12.1 多版本共存、驱动冲突修复与环境变量动态切换全指南

x86_64:非破坏性安装(Non-destructive)。在不覆盖主机显卡驱动、不污染系统默认 GCC 环境的前提下,构建独立的开发环境。:本案例基于Ubuntu 22.04 LTS (x86_64)上部署UniScene项目的基础, UniScene是一个以 Occupancy 为中心的统一驾驶场景生成框架,涵盖语义占据栅格、LiDAR 点云及多视角视频生成。目标CUDA 12.1。

2025-12-24 16:02:40 954

原创 从 AutoDL 实例上传压缩数据到 Hugging Face Datasets 全攻略

在科研工作中,特别是涉及自动驾驶、占用网络(Occupancy-centric)或类似计算机视觉项目的场景下,将本地或远程服务器(如 AutoDL)上的数据高效上传至 Hugging Face Datasets 仓库,是实现数据共享、模型训练和协作复现的关键步骤。本教程基于实际调试经验,系统阐述从准备工作到上传成功的完整流程,旨在为研究者提供可操作的指导。流程以 UniScene 项目的数据处理为例,但适用于通用场景。注意:本教程假设用户具备基本的 Python 编程和终端操作知识。

2025-12-19 20:37:04 1281

原创 Ubuntu硬盘空间不够?一文带你理清过程的根分区无损扩容实战指南

本次操作成功在不重装系统的前提下,解决了因分区布局不合理导致的空间扩容难题。遇到的问题技术成因解决方案Live USB 启动黑屏NVIDIA 显卡与 Nouveau 开源驱动冲突,导致内核死锁。使用nomodeset参数禁用内核态显卡驱动加载;避免使用acpi=off,以免屏蔽 NVMe 控制器。EFI 分区阻隔扩容扩容空间源与目标之间存在物理分区,破坏了扇区连续性。利用 GParted 进行“分区移位”。基于 UEFI/GPT 对物理地址不敏感的特性,安全移动 EFI 分区。根分区无法卸载。

2025-12-14 15:39:38 1473 1

原创 UniScene AutoDL 环境部署完全指南 (二):虚拟环境的建立与注意事项

由于其包含复杂的 CUDA 模板代码,编译过程对内存消耗极大,在多核服务器上极易因并发编译导致内存溢出(OOM)从而中断进程。原因:nuscenes-devkit 的地图代码与 Shapely 2.x 不兼容(Shapely 2.x 的 MultiPolygon 不再可直接迭代)。由于 PyTorch 2.5.1 版本较新,OpenMIM 官方仓库尚未发布对应的 MMCV 2.1.0 预编译包(Wheel)。版本不一致(Split Brain)的问题,这会导致驱动调用失败或 C++ 扩展编译错误。

2025-12-11 00:53:16 1291 5

原创 nuScenes数据集处理(一)——如何利用ASAP生成12Hz高密度标注数据

是一个针对自动驾驶场景设计的高效序列感知自动标注流水线。该项目的核心痛点在于解决自动驾驶数据集中“传感器采样频率”与“人工标注频率”之间的巨大鸿沟。在以 nuScenes 为代表的主流数据集中,虽然 LiDAR 传感器的采集频率高达 20Hz,但为了控制标注成本,官方仅提供 2Hz(即每秒 2 帧)的关键帧(Keyframes)人工标注。这意味着 90% 的传感器数据(中间帧/Sweeps)处于无监督状态,极大地浪费了数据的时序价值。

2025-12-04 13:02:11 1387 1

原创 AutoDL下清理Linux隐藏回收站的完整实战指南

摘要: AutoDL实例常因Linux删除机制和图形界面操作导致磁盘空间未真正释放。本文通过实战案例,指导用户排查隐藏回收站文件(如/root/.local/share/Trash和/root/autodl-tmp/.Trash-0),使用find和du命令定位占用空间的大文件(如HuggingFace缓存和模型权重),并通过rm -rf安全清理。清理后需用df -h验证空间释放效果。建议用户调整删除习惯、迁移缓存路径并定期清理隐藏目录(如.ipynb_checkpoints),避免盲目扩容。

2025-11-29 21:20:27 1828

原创 UniScene AutoDL 环境部署完全指南 (一):数据架构与模型资产配置

本文是UniScene框架在AutoDL平台部署指南的第一部分,重点介绍数据架构与模型资产配置。主要内容包括: nuScenes数据集解析:详细说明该自动驾驶多模态数据集的结构、传感器配置和目录标准,对比全量版和Mini版的差异。 AutoDL存储设计:提出"数据盘物理存储+代码层软链接映射"策略,解决系统盘空间不足问题,提供具体目录构建和软链接映射命令。 数据集部署方案:特别推荐Mini版本快速部署方案,包含数据集本体、地图扩展、CAN总线等组件,提供国内镜像下载地址和标准解压流程。

2025-11-26 21:00:33 761 3

原创 强化学习算法 | TRPO的数学推导以及代码实现

TRPO(Trust Region Policy Optimization)是一种强化学习算法,通过约束策略更新的幅度来提升训练稳定性。其核心思想是在信任区域内优化策略,确保新旧策略的KL散度不超过阈值δ,从而避免性能骤降。TRPO将优化问题转化为带约束的最大化代理目标函数,其中目标函数为新策略的期望优势,约束条件为KL散度限制。数学推导基于策略梯度定理,通过重要性采样和优势函数降低方差,并利用共轭梯度法求解约束优化问题。TRPO在复杂任务中表现出色,解决了传统策略梯度方法因过大更新导致的不稳定问题。

2025-11-25 10:28:41 290

原创 Ubuntu环境下安装Anaconda 完整超详细指南 (含避坑指南)

本文提供了Ubuntu系统下Anaconda3的完整安装指南。重点包括:推荐使用清华镜像站快速下载安装包;强调必须使用普通用户权限安装,避免使用sudo;详细讲解安装过程中的关键步骤,特别是初始化Conda环境;配置国内镜像源以加速后续软件安装;并提供常见问题的解决方案。安装完成后,用户将获得一个配置完善的Python数据科学环境,适合深度学习开发。

2025-11-25 10:02:34 843

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除