目录
二叉树的概念
满二叉树和完全二叉树
满二叉树:所有的叶子结点都在最后一层(叶子结点即后面没有左右节点的了)
完全二叉树:所有的叶子结点都在最后一层和倒数第二层,并且倒数第一层叶子节点在左边连续,倒数第二层的叶子节点在右边连续。
前中后序遍历思路分析:
前中后序查找思路分析:
删除结点的思路分析:
代码实现
package Tree;
public class BinaryTreeDemo {
public static void main(String[] args) {
BinaryTree binaryTree = new BinaryTree();
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "李逵");
root.setLeft(node2);
root.setRight(node3);
node3.setLeft(node5);
node3.setRight(node4);
binaryTree.setRoot(root);
System.out.println("前序遍历");
binaryTree.preOrder();
//
// System.out.println("中序遍历");
// binaryTree.infixOrder();
//
// System.out.println("后序遍历");
// binaryTree.postOrder();
//前序遍历
// System.out.println("前序遍历方式~~~~");
// HeroNode resNode = binaryTree.preOrderSearch(5);
// if(resNode!=null){
// System.out.printf("找到了,信息为no=%d name=%s",resNode.getNo(),resNode.getName());
// System.out.println();
// }else {
// System.out.printf("没有找到no=%d的英雄",5);
// System.out.println();
// }
// 中序遍历查找
// System.out.println("中序遍历方式~~~~");
// HeroNode resNode = binaryTree.infixOrderSearch(4);
// if(resNode!=null){
// System.out.printf("找到了,信息为no=%d name=%s",resNode.getNo(),resNode.getName());
// System.out.println();
// }else {
// System.out.printf("没有找到no=%d的英雄",4);
// System.out.println();
// }
// 后续遍历
// System.out.println("后序遍历方式~~~~");
// HeroNode resNode = binaryTree.postOrderSearch(2);
// if(resNode!=null){
// System.out.printf("找到了,信息为no=%d name=%s",resNode.getNo(),resNode.getName());
// System.out.println();
// }else {
// System.out.printf("没有找到no=%d的英雄",2);
// System.out.println();
// }
//测试删除结点
System.out.println("删除前,前序遍历");
binaryTree.preOrder();
binaryTree.delNode(3);
System.out.println("删除后,前序遍历");
binaryTree.preOrder();
}
}
//创建BinaryTree 二叉树
class BinaryTree {
private HeroNode root;
public void setRoot(HeroNode root) {
this.root = root;
}
//删除结点
public void delNode(int no){
if(root!=null){
if(root.getNo()==no){
root=null;
}else {
root.delNode(no);
}
}else {
System.out.println("空树,不能删除");
}
}
//前序遍历
public void preOrder() {
if (this.root != null) {
this.root.preOrder();
} else {
System.out.println("二叉数为空 无法遍历");
}
}
//中序遍历
public void infixOrder() {
if (this.root != null) {
this.root.infixOrder();
} else {
System.out.println("二叉数为空 无法遍历");
}
}
//后序遍历
public void postOrder() {
if (this.root != null) {
this.root.postOrder();
} else {
System.out.println("二叉数为空 无法遍历");
}
}
//前序遍历
public HeroNode preOrderSearch(int no) {
if (root != null) {
return root.preOrderSearch(no);
} else {
return null;
}
}
//中序遍历
public HeroNode infixOrderSearch(int no) {
if (root != null) {
return root.infixOrderSearch(no);
} else {
return null;
}
}
//后续遍历
public HeroNode postOrderSearch(int no){
if(root!=null){
return this.root.postOrderSearch(no);
}else {
return null;
}
}
}
//先创建HeroNode节点
class HeroNode {
private int no;
private String name;
private HeroNode left;
private HeroNode right;
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
//递归删除结点
public void delNode(int no){
if (this.left!=null&&this.left.no==no){
this.left=null;
return;
}
if(this.right!=null&&this.right.no==no){
this.right=null;
return;
}
if (this.left!=null){
this.left.delNode(no);
}
if (this.right!=null){
this.right.delNode(no);
}
}
//编写前序遍历的方法
public void preOrder() {
System.out.println(this);//先输出父节点
//递归向左子树前序遍历
if (this.left != null) {
this.left.preOrder();
}
//递归向右子树前序遍历
if (this.right != null) {
this.right.preOrder();
}
}
//编写中序遍历的方法
public void infixOrder() {
//递归向左子树z序遍历
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);//输出父节点
//递归向右子树z序遍历
if (this.right != null) {
this.right.infixOrder();
}
}
//编写后序遍历的方法
public void postOrder() {
if (this.left != null) {
this.left.postOrder();
}
if (this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
public HeroNode preOrderSearch(int no) {
if (this.no == no) {
return this;
}
HeroNode resNode = null;
if (this.left != null) {
resNode = this.left.preOrderSearch(no);
}
if (resNode != null) {
return resNode;
}
if (this.right != null) {
resNode = this.right.preOrderSearch(no);
}
return resNode;
}
//中序遍历查找
public HeroNode infixOrderSearch(int no) {
HeroNode resNode = null;
if (this.left != null) {
resNode = this.left.infixOrderSearch(no);
}
if (resNode != null) {
return resNode;
}
if (this.no == no) {
return this;
}
if (this.right != null) {
resNode = this.right.infixOrderSearch(no);
}
return resNode;
}
//后续遍历查找
public HeroNode postOrderSearch(int no) {
HeroNode resNode = null;
if (this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if (resNode != null) {
return resNode;
}
if (this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if (this.no == no) {
return this;
}
return resNode;
}
}