二叉树的前中后序遍历查找以及删除

目录

二叉树的概念

前中后序遍历思路分析:

前中后序查找思路分析:

删除结点的思路分析:

代码实现


二叉树的概念

满二叉树和完全二叉树

满二叉树:所有的叶子结点都在最后一层(叶子结点即后面没有左右节点的了)

完全二叉树:所有的叶子结点都在最后一层和倒数第二层,并且倒数第一层叶子节点在左边连续,倒数第二层的叶子节点在右边连续。

前中后序遍历思路分析:

前中后序查找思路分析:

删除结点的思路分析:

代码实现
package Tree;

public class BinaryTreeDemo {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        HeroNode root = new HeroNode(1, "宋江");
        HeroNode node2 = new HeroNode(2, "吴用");
        HeroNode node3 = new HeroNode(3, "卢俊义");
        HeroNode node4 = new HeroNode(4, "林冲");
        HeroNode node5 = new HeroNode(5, "李逵");

        root.setLeft(node2);
        root.setRight(node3);
        node3.setLeft(node5);
        node3.setRight(node4);

        binaryTree.setRoot(root);

        System.out.println("前序遍历");
        binaryTree.preOrder();
//
//        System.out.println("中序遍历");
//        binaryTree.infixOrder();
//
//        System.out.println("后序遍历");
//        binaryTree.postOrder();

        //前序遍历
//        System.out.println("前序遍历方式~~~~");
//        HeroNode resNode = binaryTree.preOrderSearch(5);
//        if(resNode!=null){
//            System.out.printf("找到了,信息为no=%d name=%s",resNode.getNo(),resNode.getName());
//            System.out.println();
//        }else {
//            System.out.printf("没有找到no=%d的英雄",5);
//            System.out.println();
//        }
       // 中序遍历查找
//        System.out.println("中序遍历方式~~~~");
//        HeroNode resNode = binaryTree.infixOrderSearch(4);
//        if(resNode!=null){
//            System.out.printf("找到了,信息为no=%d name=%s",resNode.getNo(),resNode.getName());
//            System.out.println();
//        }else {
//            System.out.printf("没有找到no=%d的英雄",4);
//            System.out.println();
//        }
//        后续遍历
//        System.out.println("后序遍历方式~~~~");
//        HeroNode resNode = binaryTree.postOrderSearch(2);
//        if(resNode!=null){
//            System.out.printf("找到了,信息为no=%d name=%s",resNode.getNo(),resNode.getName());
//            System.out.println();
//        }else {
//            System.out.printf("没有找到no=%d的英雄",2);
//            System.out.println();
//        }
        //测试删除结点
        System.out.println("删除前,前序遍历");
        binaryTree.preOrder();
        binaryTree.delNode(3);
        System.out.println("删除后,前序遍历");
        binaryTree.preOrder();
    }
}

//创建BinaryTree 二叉树
class BinaryTree {
    private HeroNode root;

    public void setRoot(HeroNode root) {
        this.root = root;
    }

    //删除结点
    public void delNode(int no){
        if(root!=null){
            if(root.getNo()==no){
                root=null;
            }else {
                root.delNode(no);
            }
        }else {
            System.out.println("空树,不能删除");
        }
    }

    //前序遍历
    public void preOrder() {
        if (this.root != null) {
            this.root.preOrder();
        } else {
            System.out.println("二叉数为空 无法遍历");
        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.root != null) {
            this.root.infixOrder();
        } else {
            System.out.println("二叉数为空 无法遍历");
        }
    }

    //后序遍历
    public void postOrder() {
        if (this.root != null) {
            this.root.postOrder();
        } else {
            System.out.println("二叉数为空 无法遍历");
        }
    }

    //前序遍历
    public HeroNode preOrderSearch(int no) {
        if (root != null) {
            return root.preOrderSearch(no);
        } else {
            return null;
        }
    }

    //中序遍历
    public HeroNode infixOrderSearch(int no) {
        if (root != null) {
            return root.infixOrderSearch(no);
        } else {
            return null;
        }
    }
    //后续遍历
    public HeroNode postOrderSearch(int no){
        if(root!=null){
            return this.root.postOrderSearch(no);
        }else {
            return null;
        }
    }
}

//先创建HeroNode节点
class HeroNode {
    private int no;
    private String name;
    private HeroNode left;
    private HeroNode right;

    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public HeroNode getLeft() {
        return left;
    }

    public void setLeft(HeroNode left) {
        this.left = left;
    }

    public HeroNode getRight() {
        return right;
    }

    public void setRight(HeroNode right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }
    //递归删除结点
    public void delNode(int no){
        if (this.left!=null&&this.left.no==no){
            this.left=null;
            return;
        }
        if(this.right!=null&&this.right.no==no){
            this.right=null;
            return;
        }
        if (this.left!=null){
            this.left.delNode(no);
        }
        if (this.right!=null){
            this.right.delNode(no);
        }
    }

    //编写前序遍历的方法
    public void preOrder() {
        System.out.println(this);//先输出父节点
        //递归向左子树前序遍历
        if (this.left != null) {
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if (this.right != null) {
            this.right.preOrder();
        }
    }

    //编写中序遍历的方法
    public void infixOrder() {
        //递归向左子树z序遍历
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);//输出父节点
        //递归向右子树z序遍历
        if (this.right != null) {
            this.right.infixOrder();
        }
    }

    //编写后序遍历的方法
    public void postOrder() {
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }

    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        if (this.no == no) {
            return this;
        }
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
        return resNode;
    }

    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.no == no) {
            return this;
        }
        if (this.right != null) {
            resNode = this.right.infixOrderSearch(no);
        }
        return resNode;
    }

    //后续遍历查找
    public HeroNode postOrderSearch(int no) {
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.postOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.postOrderSearch(no);
        }
        if (this.no == no) {
            return this;
        }
        return resNode;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值