Java中的Stream

1. 什么是 Stream?

Stream 是 Java 8 引入的一种新方式,目的是帮助我们更简洁、更高效地处理集合(如 List、Set、Map 等)。你可以把 Stream 想象成一条“流水线”,数据就像是流水线上的原材料,经过流水线的各个环节处理,最后你会得到想要的结果。

2. 为什么要使用 Stream?

在没有 Stream 之前,处理集合数据时,我们通常会使用 循环 来逐个操作每个元素,这样代码冗长、难以维护。

传统做法:

假设我们有一个 List 存储了多个整数,我们想找出所有大于 10 的数字。
 

List<Integer> numbers = Arrays.asList(5, 12, 15, 8, 22);
List<Integer> result = new ArrayList<>();

for (int num : numbers) {
    if (num > 10) {
        result.add(num);
    }
}
System.out.println(result);  // 输出 [12, 15, 22]

这种方式看起来没问题,但是如果我们需要对多个集合执行各种复杂的操作(过滤、排序、映射等),代码就会变得非常冗长。

使用 Stream:

Stream 让你可以通过一系列简单的“流式操作”来处理数据。
 

List<Integer> numbers = Arrays.asList(5, 12, 15, 8, 22);
List<Integer> result = numbers.stream()  // 将 List 转换成 Stream
                              .filter(num -> num > 10)  // 过滤大于 10 的元素
                              .collect(Collectors.toList());  // 收集结果为一个新的 List

System.out.println(result);  // 输出 [12, 15, 22]

通过 stream() 方法,我们将 List 转换成了一个 Stream,接着使用了 filter() 来过滤出大于 10 的元素,最后通过 collect() 方法将结果转回 List。

3. 流(Stream)的核心特点

  1. 声明式代码:你不需要关心具体的如何循环,Stream 把这些细节帮你处理了,你只需要专注于“做什么”而不是“怎么做”。
  2. 支持链式调用:你可以将多个操作连接在一起,像流水线一样一步步处理数据。
  3. 惰性求值:Stream 中的操作不会立即执行,直到你调用终端操作时,才会真正执行所有的操作。
  4. 可以并行处理:Stream 使得并行处理变得非常简单,特别适用于大数据量的处理。

4. Stream 的基本操作

Stream 主要有两类操作:中间操作终端操作

1. 中间操作(Intermediate Operations)

中间操作会返回一个新的 Stream,这意味着你可以连续链式调用多个中间操作。中间操作通常是懒执行的,只有在终端操作执行时,所有的中间操作才会一起执行。

常用的中间操作包括:

  • filter():过滤数据,返回符合条件的元素。
  • map():将每个元素转换成新的形式。
  • sorted():对数据进行排序。

示例
 

List<Integer> numbers = Arrays.asList(5, 12, 15, 8, 22);

List<Integer> result = numbers.stream()        // 将 List 转换为 Stream
                              .filter(num -> num > 10)  // 过滤出大于 10 的元素
                              .map(num -> num * 2)      // 每个数字乘以 2
                              .sorted()                 // 排序
                              .collect(Collectors.toList());  // 收集结果为一个 List

System.out.println(result);  // 输出 [24, 30, 44]

在这个例子中,我们做了三件事:

  • 先过滤出大于 10 的数字。
  • 然后将每个数字乘以 2。
  • 最后对结果进行排序。
2. 终端操作(Terminal Operations)

终端操作是 Stream 处理的最后一步,执行完终端操作后,Stream 就会被消耗掉,无法继续使用。常见的终端操作有:

  • collect():将 Stream 中的元素收集成一个集合。
  • forEach():对每个元素执行某个操作。
  • reduce():将 Stream 中的所有元素聚合成一个结果(比如求和)。
  • count():统计元素的数量。

示例
 

List<Integer> numbers = Arrays.asList(5, 12, 15, 8, 22);

// 1. collect():收集到 List 中
List<Integer> result = numbers.stream()
                              .filter(num -> num > 10)
                              .collect(Collectors.toList());
System.out.println(result);  // 输出 [12, 15, 22]

// 2. forEach():打印每个元素
numbers.stream()
       .forEach(num -> System.out.println(num));

// 3. reduce():求和
int sum = numbers.stream()
                 .reduce(0, (a, b) -> a + b);
System.out.println(sum);  // 输出 62

5. 延迟执行与惰性求值

Stream 的操作是惰性执行的,也就是说,Stream 中的操作并不会立即执行,而是等到你真正需要结果时(调用终端操作)才会执行。这种特性让我们可以做一些优化,比如避免不必要的操作。

示例
 

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

// 中间操作:过滤和映射
Stream<Integer> stream = numbers.stream()
                                .filter(num -> num > 2)  // 过滤出大于 2 的数字
                                .map(num -> num * 2);     // 每个数字乘以 2

// 终端操作:打印结果
stream.forEach(System.out::println);  // 输出 6, 8, 10

在上面的代码中,filter()map() 是中间操作,只有在调用 forEach()(终端操作)时,才会实际进行数据处理。

6. 并行流(Parallel Stream)

Stream 还支持并行流(parallelStream()),它可以利用多核 CPU 的优势来加速处理。当你需要处理大量数据时,使用并行流可以显著提高效率。

示例
 

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

// 使用 parallelStream() 进行并行处理
numbers.parallelStream()
       .forEach(num -> System.out.println(num + " processed by " + Thread.currentThread().getName()));

总结

  • Stream 让你以声明式的方式处理数据,代码更加简洁和易读。
  • 中间操作(如 filtermap)是对流的转换,终端操作(如 collectforEach)才会触发数据的实际处理。
  • 惰性求值:Stream 的中间操作不会立即执行,而是直到终端操作调用时才会进行计算。
  • 并行流:Stream 支持并行处理,可以通过 parallelStream() 提升处理大量数据的效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值