- 博客(101)
- 收藏
- 关注
原创 基于 Qwen2.5-1.5B-Instruct 的商品信息抽取实践(附完整代码)
产品:商品具体名称(如 “休闲卫衣”“夏季连衣裙”)品牌:商品所属品牌(如 “ABC”“JKL”)特点:商品特性(如 “柔软亲肤”“透气面料”)原价 / 促销价:商品定价信息月销量:商品销售数据若文本中不存在某属性,需统一标注为['原文中未提及'],最终输出 JSON 格式结果,方便后续数据处理。
2025-11-03 22:10:24
845
原创 bert自然语言处理框架
BERT(Bidirectional Encoder Representations from Transformers)是基于 Transformer 架构的双向编码器表示模型,通过预训练学习语言表示,可适配多种自然语言处理(NLP)任务。
2025-10-31 22:17:36
953
原创 YOLOv4 全面解析:核心改进、数据增强与网络架构
YOLO v4(You Only Look Once version 4)是计算机视觉领域中经典的实时目标检测算法,由 Alexey Bochkovskiy 等人于 2020 年提出。其核心目标是在保证检测速度的同时显著提升检测精度,实现 "速度与精度的平衡",能够快速准确地识别图像或视频帧中多个目标的位置和类别,广泛应用于自动驾驶、安防监控、智能交通等实际场景。
2025-10-21 20:38:25
783
原创 用Python实现自动发消息
日常工作生活中,你是否遇到过这些场景:深夜需要定时给客户发送祝福消息,不想熬夜等待;群内需要分时段推送通知,手动复制粘贴重复到崩溃;直播弹幕互动、活动打卡,需要规律发送指定内容。其实用 Python 只需几十行代码,就能实现自定义内容、自由控制发送频率、定时触发的自动发消息功能,支持微信、QQ、企业微信等所有桌面聊天软件,彻底告别机械操作!今天就把这份超详细教程分享给大家,新手也能快速上手~这个 Python 自动发消息脚本虽然简单,但实用性拉满!
2025-10-20 22:13:05
1393
2
原创 【YOLO模型】(4)--YOLO V3:目标检测的进化飞跃
在计算机视觉领域,目标检测始终占据着举足轻重的地位,其应用场景极为广泛,涵盖了从安防监控中的行人与车辆检测,到智能驾驶里对道路标识、障碍物的识别,再到工业生产中的产品缺陷检测等多个方面。随着深度学习技术的迅猛发展,目标检测算法也经历了多次重大变革与升级 ,其中 YOLO 系列算法凭借其独特的设计理念和出色的性能表现,成为了目标检测领域的明星算法。YOLOv3 作为 YOLO 系列的重要版本,在 YOLOv1 和 YOLOv2 的基础上进行了全方位的优化与创新。
2025-10-14 19:50:35
935
原创 【YOLO 模型详解】(3)YOLO v2 核心改进与技术解析
BatchNorm 和高分辨率训练提升了模型稳定性和特征提取能力DarkNet 架构支持多尺度输入,减少参数冗余K-means 聚类先验框和直接位置预测提高了定位精度细粒度特征融合增强了小目标检测能力这些改进奠定了 YOLO 系列后续发展的基础,使其成为工业界广泛应用的目标检测方案。下一篇将详解 YOLO v3 的技术创新,敬请关注。
2025-10-12 21:07:11
757
原创 【YOLO 模型进阶】(2)YOLO v1 超详解:从网络架构到优缺点剖析
整体损失 = 位置误差 + 置信度误差 + 类别误差通过权重 λ_coord=5、λ_noobj=0.5 的设计,YOLO v1 优先保证 “位置精度” 和 “有目标网格的置信度精度”,同时避免无目标网格的误差干扰训练。速度极快:标准版本(24 层卷积)每秒可处理 45 帧图像(45 FPS),精简版(9 层卷积)甚至可达 150 FPS,完全满足视频实时检测需求(通常要求≥30 FPS);假阳性率低。
2025-10-12 20:46:58
861
原创 【YOLO 模型入门】(1)一文读懂 YOLO:从核心概念到检测原理
若需求是实时性(如自动驾驶、直播特效):优先选 YOLO 等单阶段算法;若需求是极致准确率(如医学影像分析、静态图像精细检测):可考虑 Faster R-CNN、Mask R-CNN 等两阶段算法。首先需要一个 “标准答案”——GT(Ground Truth,真值框),即人工标注的目标位置和类别(比如标注 “这是猫,位置在 (100,200,300,400)”)。然后对比模型预测的边界框(Pred Bbox)和 GT,用IoU(交并比)
2025-10-10 19:26:37
1563
原创 使用 Flask 实现本机 PyTorch 模型部署:从服务端搭建到客户端调用
在机器学习项目中,训练好的模型只有部署到实际环境中才能发挥价值。对于本机测试或小规模应用场景,Flask 框架是实现模型部署的轻量优选 —— 它能快速搭建 HTTP 服务,让模型以接口形式接收请求、返回预测结果,无需复杂的服务器配置。本文将以 ResNet18 图像分类模型为例,完整讲解如何用 Flask 实现 “本机模型部署”:从服务端代码编写(模型加载、接口定义),到客户端代码开发(图像上传、结果解析),再到常见问题排查,确保新手也能一步到位跑通流程。
2025-10-09 22:08:56
972
1
原创 基于 OpenCV + 深度学习的实时人脸检测与年龄性别识别系统
"""====== 2. 变量初始化 ======="""# 年龄分段(与age_net模型输出的8个类别一一对应)ageList = ['0-2岁', '4-6岁', '8-12岁', '15-20岁','25-32岁', '38-43岁', '48-53岁', '60-100岁']# 性别选项(与gender_net模型输出的2个类别一一对应)genderList = ['男性', '女性']# 图像预处理均值(age_net和gender_net模型要求的固定均值)定义。
2025-09-28 20:10:36
1400
原创 Dlib+OpenCV 人脸轮廓绘制
人脸轮廓绘制,本质是通过 “线条连接” 或 “凸包拟合”,将 Dlib 检测到的 68 个面部关键点转化为可视化轮廓的过程。直线连接:适用于连续分布的关键点(如下巴轮廓、眉毛),直接用线段连接相邻关键点,形成流畅线条;凸包拟合:适用于闭合区域(如眼睛、嘴唇),通过计算覆盖所有关键点的 “最小凸多边形”,再绘制闭合轮廓,更贴合器官的自然形状。简单来说,关键点是 “点”,轮廓绘制是把 “点” 连成 “线”,让人脸结构从抽象坐标变成直观图形。
2025-09-25 21:18:32
975
原创 Dlib、OpenCV 关键点定位 原理及案例解析
人脸关键点定位(Face Landmark Detection)是指通过算法自动识别并标记人脸图像中具有代表性的特征点,这些特征点通常对应人脸的关键结构,如眉毛、眼睛、鼻子、嘴唇、下巴轮廓等。在实际应用中,最常用的是68 个关键点标记体系(由 dlib 库默认支持),该体系通过预训练模型(0-16 号:下巴轮廓线,共 17 个点;17-26 号:左右眉毛,各 5 个点;27-35 号:鼻子,共 9 个点(含鼻梁、鼻尖);36-47 号:左右眼睛,各 6 个点(含眼睑、眼角);
2025-09-25 21:10:36
975
2
原创 自然语言处理——情感分析 <上>
本文介绍了微博评论情感分析项目的预处理阶段,包括词表构建和文本预处理两个关键步骤。通过这些步骤,我们将原始的文本数据转换为模型可以处理的数字形式,为后续的模型训练奠定了基础。加载腾讯预训练词向量,并转换为 200 维构建情感分析模型(如 LSTM、CNN 等)模型训练与评估模型优化与部署通过这些步骤,我们可以构建一个能够自动识别微博评论情感的模型,为舆情分析提供有力支持。
2025-09-24 22:09:50
1329
原创 长短期记忆网络 LSTM 详解
解决长期依赖:通过细胞状态和门控机制,能稳定传递长序列中的早期关键信息,避免梯度消失。信息筛选灵活:三个门控分别负责 “遗忘、输入、输出”,能主动筛选有用信息,减少冗余。
2025-09-22 19:37:47
1029
原创 一文读懂 RNN 循环神经网络
优势:能捕捉序列数据的时间依赖关系,权重共享支持任意长度序列,模型结构简单易实现。局限:无法处理长期依赖问题(梯度消失 / 爆炸),仅适用于短序列任务。关键概念:隐藏状态(记忆载体)、权重共享(适应变长序列)、时间步(序列处理单位)。
2025-09-22 19:29:01
788
原创 手把手教你用 Python 实现 LBPH 算法:从原理到人脸识别实战
本文从原理到代码,完整讲解了 LBPH 算法的实现流程。核心在于理解 “LBP 特征提取” 和 “分块直方图统计”,而 OpenCV 的内置函数已经帮我们封装了复杂的计算,只需关注数据准备和参数调整即可。如果你是计算机视觉新手,建议先从修改训练数据开始(替换成自己的照片),再尝试调整thresholdgrid_x等参数,观察识别结果的变化,逐步掌握算法的调优技巧。要不要我帮你整理一份LBPH 算法常见报错与解决方案清单?
2025-09-22 19:20:54
1033
原创 OpenCV 风格迁移、DNN模块 案例解析及实现
图像风格迁移的核心目标是 “内容与风格的分离与重组内容图像:提供图像的 “结构信息”,比如照片中的建筑、人物、风景轮廓(例:黄鹤楼照片)。风格图像:提供图像的 “艺术风格信息”,比如梵高《星空》的漩涡笔触、莫奈《睡莲》的色彩晕染(例:梵高《星空》)。生成图像:保留内容图像的结构,同时赋予风格图像的艺术特征(例:“梵高星空风” 的黄鹤楼)。在 OpenCV 中,风格迁移的实现依赖预训练的神经网络模型。
2025-09-17 20:00:28
1281
原创 OpenCV 人脸检测、微笑检测 原理及案例解析
Haar 特征(Haar-like features)是一种基于图像灰度差异的特征描述符,最早由 Viola 和 Jones 在 2001 年提出,专门用于快速人脸检测。人脸的局部区域存在固定的灰度规律(比如眼睛区域比脸颊暗、鼻梁比两侧亮),通过捕捉这些规律来区分 “人脸” 和 “非人脸”。原理层:Haar 特征通过灰度差异描述人脸局部特征,级联分类器通过多阶段筛选实现高效检测。实战层:3 个案例覆盖了静态图像、实时摄像头、联合检测场景,掌握参数调整技巧可应对不同需求。
2025-09-17 19:49:11
1395
原创 进阶OpenCV --视频物体跟踪
KCF 跟踪器是一种基于相关滤波的判别式跟踪算法,它将目标跟踪问题转化为 “区分目标与背景” 的二分类问题,通过核函数处理非线性特征,实现对目标的快速定位与尺度适应。
2025-09-16 21:13:32
1209
原创 【进阶OpenCV】 光流估计--描绘运动物体轨迹
在计算机视觉领域,运动目标跟踪是核心任务之一,而光流估计则是实现该任务的经典技术。它通过捕捉连续图像帧间像素的运动向量,让我们直观地 “看到” 物体的运动轨迹。本文将从原理到代码,手把手教你用 OpenCV 实现基于 Lucas-Kanade 金字塔光流的运动轨迹绘制,适合有基础 OpenCV 知识的开发者进阶学习。本文通过 OpenCV 实现了基于 Lucas-Kanade 金字塔光流的运动轨迹绘制,核心逻辑是 “提取特征点→跟踪特征点→绘制帧间连线”。
2025-09-16 09:59:01
1240
原创 OpenCV 图像拼接实战:从特征检测到全景融合
首先确保已安装和numpy库(若未安装,执行我们先定义两个高频使用的工具函数:图像显示函数和特征检测函数,为后续步骤复用。
2025-09-15 21:58:43
1119
原创 答题卡识别改分项目
import cv2# 图像显示函数:接收窗口名和图像,按任意键关闭窗口cv2.waitKey(0) # 等待按键输入(0表示无限等待)cv2.destroyWindow(name) # 关闭当前窗口。
2025-09-15 21:41:32
1786
2
原创 OpenCV 指纹验证、识别
在计算机视觉领域,指纹识别是基于生物特征的身份认证技术,通过提取指纹独特的纹路特征(如端点、分叉点、岛状纹等),与预存的指纹模板进行比对,实现个人身份的精准确认。指纹作为人体固有生物特征,具有唯一性(全球 60 亿人中无完全相同指纹)和稳定性(成年后指纹纹路终身不变),这使得指纹识别在安防、金融、考勤等领域广泛应用。特征提取:通过图像处理算法(如 SIFT、ORB)从指纹图像中提取具有辨识度的关键点及其描述符(如纹路方向、局部纹理信息);特征匹配。
2025-09-12 21:11:16
1190
原创 openCV 角点检测与 SIFT 特征提取:原理与实战解析
角点是图像中局部区域与周围有显著灰度变化的点或像素,比如物体的拐角、边缘的交点等。角点检测旨在从图像中找出这些具有特殊视觉意义的点,它在图像配准、目标跟踪等场景中应用广泛,且角点具有旋转不变性、尺度不变性等优良特性。SIFT(尺度不变特征变换)是一种用于图像特征提取的算法,能够在图像中检测并描述局部特征点。它具有尺度不变性、旋转不变性等特性,即使图像发生缩放、旋转等变换,仍能稳定地提取特征,在图像匹配、物体识别等领域应用广泛。角点检测能快速定位图像中的关键角点,为图像分析提供基础;
2025-09-11 20:13:29
1290
原创 OpenCV 发票识别全流程:透视变换与轮廓检测详解
在办公自动化与计算机视觉结合的场景中,发票识别是典型的落地需求 —— 实际拍摄的发票常因角度倾斜、背景杂乱导致文字提取困难,而基于 OpenCV 的透视变换与轮廓检测技术,能快速将倾斜发票校正为正视角、高对比度的规整图像,为后续 OCR 文字识别奠定基础。本文将从核心技术原理出发,结合完整代码与实战效果,拆解发票识别的全流程,适合 OpenCV 入门者与计算机视觉爱好者学习。透视变换是一种将三维空间中倾斜的平面映射到二维平面的几何变换。
2025-09-11 19:52:20
1075
原创 OpenCV 高阶实战:图像直方图与掩码图像深度解析
图像直方图是描述图像像素值分布的统计图形,它将图像的像素值(通常 0-255)作为横轴,像素值出现的频次(或概率)作为纵轴,用柱状图或折线图展示。对灰度图:直方图反映不同灰度级(0-255)的像素数量;对彩色图:可分别展示蓝(B)、绿(G)、红(R)三通道的像素分布。简单来说,直方图就像图像的 “体检报告”,通过它能快速判断图像的亮度、对比度等关键信息。掩码图像是与原图像尺寸完全相同的二进制图像,像素值仅为0或255(无符号 8 位整数,np.uint8像素值为0屏蔽区域(后续操作不处理该区域);
2025-09-10 09:43:46
1379
原创 OpenCV 高阶 图像金字塔 用法解析及案例实现
图像金字塔并非传统意义上的 “金字塔” 结构,而是由同一图像的多个不同分辨率子图构成的集合。底部为原始高分辨率图像,包含最丰富的细节信息;向上每一层图像的分辨率都逐步降低(通常宽高各缩小为上一层的 1/2);顶部为低分辨率图像,仅保留图像的整体轮廓信息。可以形象地理解为:将原始图像不断 “缩小” 并堆叠,形成类似金字塔的形态,因此得名 “图像金字塔”。( 示意图:从下到上分辨率逐步降低,细节信息逐渐减少)拉普拉斯金字塔(Laplacian Pyramid)的每一层Li,定义为。
2025-09-09 20:03:25
1155
原创 OpenCV 实战:基于模板匹配的身份证号自动识别系统
本项目旨在通过计算机视觉技术,自动识别身份证图片中的身份证号码。系统主要分为三个核心模块:自定义工具函数、模板图像预处理、身份证号定位与识别。整个流程基于 OpenCV 库实现,不需要复杂的深度学习框架,适合入门级学习者理解和实践。Python 3.xOpenCV (cv2) 库NumPy 库自定义工具函数辅助图像处理从模板图像中提取数字特征并建立模板库对身份证图像进行预处理和轮廓分析定位并提取身份证号区域的每个数字通过模板匹配识别数字并输出结果。
2025-09-09 19:33:27
1103
原创 OpenCV 信用卡号识别
自定义命令行参数是指在编写命令行程序时,由程序开发者定义并期望用户通过命令行界面(CLI)输入的参数。这些参数允许用户向程序传递额外的信息或配置,以便程序能够根据这些信息执行不同的操作或行为。在Python中,使用argparse模块可以方便地定义和解析自定义命令行参数。argparse模块提供了丰富的功能来定义参数的类型、默认值、是否必需等属性,并能够在用户没有按预期提供参数时给出友好的帮助信息。1)位置参数(Positional Arguments)位置参数是按照位置顺序提供的参数。
2025-09-08 21:13:39
1284
原创 自然语言处理 词嵌入和Word2Vec模型
CONTEXT_SIZE = 2 # 上下文窗口大小:中心词的「前2个词 + 后2个词」构成上下文:定义 CBOW 模型的上下文窗口 —— 对于每个 “中心词”,我们会用它前面 2 个词和后面 2 个词作为输入,共 4 个上下文词。:将原始文本按空格分割为「单词列表」(如),这是 NLP 任务的基础数据格式。class CBOW(nn.Module): # 继承nn.Module(PyTorch所有模型的基类)super(CBOW, self).__init__() # 调用父类构造函数。
2025-09-07 21:36:35
1574
原创 迁移学习实战:基于 ResNet18 的食物分类
迁移学习是一种高效的机器学习方法,它利用在大规模数据集上预训练好的模型,在新的任务上进行微调。加速训练:无需从零开始训练模型,节省大量时间。提升性能:预训练模型已经学习到了通用的特征表示,能为新任务提供良好的基础。数据高效:在新任务数据稀缺时,也能取得不错的效果。创建# 数据增强与预处理'train':]),'test':])# 加载训练集和测试集# 创建数据加载器acc_s = []
2025-09-05 19:40:41
1042
1
原创 深度学习:基于自定义 ResNet 的手写数字识别实践(MNIST 数据集)
本次基于自定义 ResNet 的 MNIST 手写数字识别实践,以 “简化、适配、高效” 为核心,既验证了残差网络在简单任务中的有效性,也为初学者提供了 “从模型设计到训练落地” 的完整实战路径。实践表明:残差网络的价值不仅在于 “深层”,更在于 “通过跳跃连接解决训练难题”;针对任务特点的轻量化设计,往往比直接套用复杂预训练模型更具性价比。后续可基于此框架,扩展至更复杂的图像分类任务(如 Fashion-MNIST、CIFAR-10),进一步深化对残差网络的理解与应用。
2025-09-04 21:31:15
1082
原创 深度学习:ResNet 残差神经网络详解
当网络深度增加到一定程度后,模型在训练集上的误差会随着深度增加而上升(而非下降),同时测试集误差也随之上升 —— 这并非过拟合(过拟合是训练集误差下降、测试集误差上升),而是模型 “能力退化”,无法有效利用深层结构提取特征。例如,在 ImageNet 数据集上,传统 56 层网络的训练误差(约 10%)反而高于 20 层网络(约 8%),说明深层网络不仅没有带来性能提升,反而出现了 “越学越差” 的情况。
2025-09-04 21:15:03
1383
原创 【机器学习】实战:市场增长点分析挖掘项目
某电商产品数据分析流程每个环节都有具体的要求,例如需求文档要求包含:目的,分析思路,预期效果业务部门出问题和需求,以及对算法&数据部门输出报告的理解和应用。
2025-09-03 19:52:19
1021
1
原创 《深度学习》卷积神经网络:数据增强与保存最优模型解析及实现
通过继承Dataset# 从txt文件读取图像路径和标签(格式:图像路径 标签)# 加载图像并应用增强# 标签转换为Tensor# 加载训练集和验证集# 数据加载器(批量处理)其中train.1txttest.1txt文件内容:其中的每个文件地址都有其对应的图片,数据量较大,训练时间会较长,如需使用,可私信发送打包文件。整篇文章所有代码连接为一份完整代码。# 卷积层1:3通道输入→16通道输出,5x5卷积核nn.ReLU(),
2025-09-02 20:44:50
706
原创 Python 爬虫实战:爬取 B 站视频的完整教程
Python 爬虫是一种自动化工具,用于从互联网上抓取网页数据并提取有用信息。因其简洁的语法和丰富的库支持(如 requests、BeautifulSoup、Scrapy 等),Python 成为实现爬虫的首选语言之一。指定 url发送请求获取目标数据数据解析本文将以 B 站视频为例,详细介绍爬取视频的实现过程。正确设置请求头信息以绕过反爬机制准确定位音视频资源的 URL 地址分别处理音频和视频的下载与保存。
2025-09-01 19:41:58
3885
1
原创 OpenCV 图像轮廓检测与相关技术全解析
图像轮廓是图像中灰度值发生突变的连续像素点集合,本质是物体边界的抽象表示(区别于 “边缘”:边缘是孤立像素点,轮廓是连续边缘构成的闭合曲线)。通过轮廓检测,可将图像中的物体从背景中 “分离”,用数学坐标(如(x,y)点集)描述物体形状,为后续分析提供结构化数据。轮廓近似是通过减少轮廓像素点数量,用更简单的多边形拟合原始轮廓(如将 “带锯齿的圆形” 拟合为 “光滑圆形”,将 “不规则四边形” 拟合为 “标准矩形”),核心是保留轮廓的 “整体形状”,去除 “细节噪声”。其原理基于。
2025-08-29 20:20:29
2234
1
原创 卷积神经网络(CNN)搭建详解
卷积神经网络(CNN)是深度学习在计算机视觉领域的核心模型,凭借其 “局部感知” 和 “参数共享” 的特性,能高效提取图像特征,在手写数字识别、图像分类等任务中表现优异。本文将基于 PyTorch 框架,从数据预处理网络搭建模型训练到优化迭代,手把手教你实现一个能识别 MNIST 手写数字的 CNN 模型,代码可直接运行,新手也能快速上手!训练的核心是 “前向传播算损失→反向传播求梯度→优化器更新参数”,同时定期打印训练进度。
2025-08-28 19:57:09
1462
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅