7-3 单词在句子中的位置

分数 20

全屏浏览题目

切换布局

作者 温彦

单位 山东科技大学

给定英文句子,编写方法void wordPositions(String sentence),该方法中计算sentence中的每个单词在句子中的起始位置和单词长度并输出。假设句子中只包含英文字母和空格,且单词不重复。

输入格式:

句子

输出格式:

每个单词在句子中的起始位置和单词长度

输入样例:

在这里给出一组输入。例如:

Why are you so crazy about java

输出样例:

在这里给出相应的输出。例如:

Why: 0, 3
are: 4, 3
you: 8, 3
so: 12, 2
crazy: 15, 5
about: 21, 5
java: 27, 4

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

import java.util.Scanner;
public class Main {
	public static void main(String[] args)
	{
		Scanner in=new Scanner(System.in);
	    String a=in.nextLine();
	    String[] b=a.split(" ");//split函数将字符串按照(“ ”)分为n个字符串存入数组b
	    int sum=0;
	    for(int i=0;i<b.length;i++)
	    {
		    char[] c=b[i].toCharArray();
		    int c1=c.length;
		    System.out.println(b[i]+": "+sum+", "+c1);
		    sum+=c1+1;	
	    }
	    }
}    

<think>嗯,用户想知道如何用Python实现句子的填充截断,让所有句子长度统一到指定的单词数。不足的部分用PAD补,超过的则截断。首先,我需要回忆一下处理文本数据时常用的方法。 首先,用户提到的规范化句子长度,这通常在自然语言处理中预处理步骤里常见,比如在训练模型时,需要保证每个输入的序列长度一致。这时候常用的方法就是截断长句子,填充短句子。 接下来,用户需要示代码。我应该考虑如何用Python实现。首先,处理每个句子,可能需要分割成单词列表,然后根据指定的长度进行截断或填充。填充的话,通常使用特定的标记,比如<PAD>。 然后,想到可能需要用到Python的列表操作。比如,对于一个句子,先按空格分割成单词列表。然后检查这个列表的长度。如果超过指定长度,就取前max_length个元素;如果不足,就用<PAD>补到max_length。 但是,用户可能还需要考虑不同填充位置的情况,比如是在句子前面填充还是在后面填充。如,在循环神经网络中,通常会在前面填充,但有时候也可能在后面。所以示代码可能需要参数来指定填充的位置。 然后,关于实现函数,可能需要定义一个函数,接受句子字符串、最大长度、填充标记填充位置如: def normalize_sentence(sentence, max_length, pad_token=&#39;<PAD>&#39;, padding=&#39;post&#39;): words = sentence.split() if len(words) > max_length: words = words[:max_length] # 截断 else: pad_num = max_length - len(words) if padding == &#39;post&#39;: words += [pad_token] * pad_num else: words = [pad_token] * pad_num + words return &#39; &#39;.join(words) 这,用户就可以调用这个函数处理每个句子了。不过,用户可能需要处理多个句子,所以可能需要循环处理每个句子,或者向量化操作。 另外,考虑到效率问题,如果处理大量数据,可能需要更高效的方法,比如使用生成器或者利用库函数。比如,在深度学习中,Keras的pad_sequences函数可以处理这种情况,但那是针对序列的索引,而不是原始文本。不过用户可能需要的是处理原始文本,所以可能需要自己实现。 然后,用户可能还需要考虑不同的截断方式,比如是从前面截断还是后面截断。比如,在示代码中,截断是从前面还是后面?上面的示是截断后面部分,即保留前面的单词。如果需要从后面截断,可能需要取最后max_length个单词。所以,可能需要添加一个截断位置的参数,比如truncating=&#39;post&#39;或者&#39;pre&#39;。 如,修改函数: def normalize_sentence(sentence, max_length, pad_token=&#39;<PAD>&#39;, padding=&#39;post&#39;, truncating=&#39;post&#39;): words = sentence.split() if len(words) > max_length: if truncating == &#39;post&#39;: words = words[:max_length] else: words = words[-max_length:] else: pad_num = max_length - len(words) if padding == &#39;post&#39;: words += [pad_token] * pad_num else: words = [pad_token] * pad_num + words return &#39; &#39;.join(words) 这用户可以选择截断的方式。不过,这可能增加函数的复杂性,但更灵活。 然后,用户可能需要示输入输出如,给定句子max_length=5,填充标记为<PAD>: 输入句子:"I love Python programming" 分割后:[&#39;I&#39;, &#39;love&#39;, &#39;Python&#39;, &#39;programming&#39;] 长度4,不足5,填充在后面的话就是加上一个<PAD>,变成5个元素。 另一个子,句子过长,比如:"This is a sample sentence for demonstration",假设max_length=6,截断后面的部分,保留前6个单词:[&#39;This&#39;, &#39;is&#39;, &#39;a&#39;, &#39;sample&#39;, &#39;sentence&#39;, &#39;for&#39;]。 那示代码运行后的结果应该符合这些情况。用户可能需要这的测试用。 另外,用户可能想知道如何处理多个句子,比如一个句子列表。这时候可以结合列表推导式或者循环来处理每个句子。 然后,关于性能,如果处理非常大的数据集,可能需要更高效的方法,比如使用生成器或者并行处理,但基本示可能不需要涉及这些。 最后,可能需要提到相关应用场景,比如在文本分类、序列模型中的使用,或者参考类似NLP预处理的方法。如,引用中的pad函数可能类似numpy的pad,但这里是针对文本的。不过用户的引用中提到numpy.pad的参数,可能用户对填充的维度有了解,但这里处理的是序列长度,属于一维的情况。 总结步骤: 1. 分割句子单词列表。 2. 检查长度,超过则截断,不足则填充。 3. 提供参数控制填充截断的位置。 4. 返回处理后的句子字符串。 这就能实现规范化句子长度的功能了。</think>### Python实现句子填充与截断的方法 通过以下步骤可实现句子长度规范化,示代码支持前/后填充截断方式: 1. **定义处理函数**: ```python def normalize_sentence(sentence, max_length, pad_token=&#39;<PAD>&#39;, padding=&#39;post&#39;, truncating=&#39;post&#39;): words = sentence.split() # 截断处理 if len(words) > max_length: if truncating == &#39;pre&#39;: words = words[-max_length:] # 保留后段 else: words = words[:max_length] # 保留前段 # 填充处理 pad_num = max_length - len(words) if pad_num > 0: if padding == &#39;pre&#39;: words = [pad_token] * pad_num + words else: words += [pad_token] * pad_num return &#39; &#39;.join(words) ``` 2. **使用示**: ```python sentences = [ "I love Python programming", "This is a sample sentence for demonstration" ] max_length = 5 for sent in sentences: processed = normalize_sentence(sent, max_length) print(f"原句: {sent} \n处理后: {processed}\n") ``` 3. **输出结果**: ``` 原句: I love Python programming 处理后: I love Python programming <PAD> 原句: This is a sample sentence for demonstration 处理后: This is a sample sentence ``` 4. **参数说明**: - `padding=&#39;post&#39;`:在句子**末尾**填充(改为`&#39;pre&#39;`在开头填充) - `truncating=&#39;post&#39;`:截断**末尾**超长部分(改为`&#39;pre&#39;`截断开头) 5. **扩展应用**: - 与`numpy.pad`类似,该模式实现了序列维度的规范化操作[^2] - 类似数字传输系统中的信号同步机制,确保数据格式统一[^3]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值