§3.6 函数图像的描绘
一、曲线的渐近线
对于某些函数,其图形向无穷远处延伸时,会越来越趋近于某一条直线,这条直线被称为曲线的渐近线 (Asymptote)。
1. 定义
若曲线
y
=
f
(
x
)
y=f(x)
y=f(x) 上一点
P
(
x
,
y
)
P(x, y)
P(x,y) 沿曲线趋于无穷远时,该点
P
P
P 与某一直线
L
L
L 的距离趋于 0,则称直线
L
L
L 为曲线
y
=
f
(
x
)
y=f(x)
y=f(x) 的渐近线。
2. 渐近线的求法
(1) 斜渐近线 (Oblique Asymptote)
假设直线
L
:
y
=
k
x
+
b
L: y = kx + b
L:y=kx+b 是曲线
y
=
f
(
x
)
y = f(x)
y=f(x) 的渐近线。我们需要确定常数
k
k
k 和
b
b
b。
根据点到直线的距离公式,点
P
(
x
,
f
(
x
)
)
P(x, f(x))
P(x,f(x)) 到直线
L
L
L 的距离为:
d
=
∣
f
(
x
)
−
(
k
x
+
b
)
∣
1
+
k
2
d = \frac{|f(x) - (kx + b)|}{\sqrt{1 + k^2}}
d=1+k2∣f(x)−(kx+b)∣
由渐近线的定义可知,当点
P
P
P 沿曲线趋于无穷远(即
x
→
∞
x \to \infty
x→∞ 或
x
→
−
∞
x \to -\infty
x→−∞)时,距离
d
→
0
d \to 0
d→0。由于
1
+
k
2
\sqrt{1+k^2}
1+k2 是一个非零常数,这等价于:
lim
x
→
±
∞
[
f
(
x
)
−
(
k
x
+
b
)
]
=
0
\lim_{x \to \pm\infty} [f(x) - (kx + b)] = 0
x→±∞lim[f(x)−(kx+b)]=0
由此可以推导出
k
k
k 和
b
b
b 的计算公式:
-
求 k k k:
上式两边同除以 x x x(假设 x ≠ 0 x \neq 0 x=0):
lim x → ± ∞ [ f ( x ) x − k − b x ] = 0 \lim_{x \to \pm\infty} \left[ \frac{f(x)}{x} - k - \frac{b}{x} \right] = 0 x→±∞lim[xf(x)−k−xb]=0
由于当 x → ± ∞ x \to \pm\infty x→±∞ 时, b x → 0 \frac{b}{x} \to 0 xb→0,因此得到:
k = lim x → ± ∞ f ( x ) x \boxed{k = \lim_{x \to \pm\infty} \frac{f(x)}{x}} k=x→±∞limxf(x)
如果这个极限存在且有限,则计算下一步。 -
求 b b b:
由 lim x → ± ∞ [ f ( x ) − k x − b ] = 0 \lim_{x \to \pm\infty} [f(x) - kx - b] = 0 limx→±∞[f(x)−kx−b]=0 可得:
b = lim x → ± ∞ [ f ( x ) − k x ] \boxed{b = \lim_{x \to \pm\infty} [f(x) - kx]} b=x→±∞lim[f(x)−kx]
将第一步求得的 k k k 代入此式,如果这个极限存在且有限,则直线 y = k x + b y = kx + b y=kx+b 就是曲线的斜渐近线(或水平渐近线)。
注意: x → + ∞ x \to +\infty x→+∞ 和 x → − ∞ x \to -\infty x→−∞ 的极限可能不同,需要分别计算,可能得到不同的渐近线。
(2) 水平渐近线 (Horizontal Asymptote)
当斜渐近线的斜率
k
=
0
k=0
k=0 时,其方程为
y
=
b
y = b
y=b。此时,计算
b
b
b 的公式变为:
b
=
lim
x
→
±
∞
[
f
(
x
)
−
0
⋅
x
]
=
lim
x
→
±
∞
f
(
x
)
b = \lim_{x \to \pm\infty} [f(x) - 0 \cdot x] = \lim_{x \to \pm\infty} f(x)
b=x→±∞lim[f(x)−0⋅x]=x→±∞limf(x)
因此,若极限
lim
x
→
±
∞
f
(
x
)
=
b
\lim_{x \to \pm\infty} f(x) = b
limx→±∞f(x)=b 存在且有限,则直线
y
=
b
y=b
y=b 是曲线的水平渐近线。这是斜渐近线的特例。
(3) 垂直渐近线 (Vertical Asymptote)
如果在某点
x
=
x
0
x = x_0
x=x0 附近,函数值趋于无穷大,即:
lim
x
→
x
0
f
(
x
)
=
∞
(
或
−
∞
)
\lim_{x \to x_0} f(x) = \infty \quad (\text{或} -\infty)
x→x0limf(x)=∞(或−∞)
或者单侧极限
lim
x
→
x
0
+
f
(
x
)
=
∞
(
或
−
∞
)
或
lim
x
→
x
0
−
f
(
x
)
=
∞
(
或
−
∞
)
\lim_{x \to x_0^+} f(x) = \infty \quad (\text{或} -\infty) \quad \text{或} \quad \lim_{x \to x_0^-} f(x) = \infty \quad (\text{或} -\infty)
x→x0+limf(x)=∞(或−∞)或x→x0−limf(x)=∞(或−∞)
成立,则直线
x
=
x
0
x = x_0
x=x0 是曲线的垂直渐近线。
通常在函数定义域的边界点或使分母为零的点寻找垂直渐近线。
示例
例 1: 求
y
=
x
3
x
2
+
1
y = \frac{x^3}{x^2 + 1}
y=x2+1x3 的渐近线。
(解:待补充)
例 2: 求
y
=
x
2
+
x
x
2
−
1
y = \frac{x^2 + x}{x^2 - 1}
y=x2−1x2+x 的渐近线。
(解:待补充)
例 3: 求
y
=
1
x
+
ln
(
1
+
e
x
)
y = \frac{1}{x} + \ln(1 + e^x)
y=x1+ln(1+ex) 的渐近线。
(解:待补充)
二、函数图形的作法
描绘函数 y = f ( x ) y=f(x) y=f(x) 图形的大致步骤如下:
- 确定定义域: 求出使函数表达式有意义的自变量 x x x 的取值范围。
- 考察对称性与周期性:
- 奇偶性: 判断 f ( − x ) f(-x) f(−x) 与 f ( x ) f(x) f(x) 的关系。若 f ( − x ) = f ( x ) f(-x)=f(x) f(−x)=f(x),则为偶函数,图形关于 y y y 轴对称;若 f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x),则为奇函数,图形关于原点对称。
- 周期性: 判断是否存在常数 T > 0 T>0 T>0 使得 f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x) 对定义域内所有 x x x 成立。若存在,则只需分析一个周期长度的区间。
- 研究单调性与极值:
- 计算一阶导数 f ′ ( x ) f'(x) f′(x)。
- 求出 f ′ ( x ) = 0 f'(x)=0 f′(x)=0 的点(驻点)和 f ′ ( x ) f'(x) f′(x) 不存在的点(可能是极值点)。
- 用这些点划分定义域,列表分析 f ′ ( x ) f'(x) f′(x) 的符号,确定函数的单调递增和递减区间。
- 根据一阶导数在驻点或不可导点两侧的符号变化,判断并计算极大值和极小值。
- 研究凹凸性与拐点:
- 计算二阶导数 f ′ ′ ( x ) f''(x) f′′(x)。
- 求出 f ′ ′ ( x ) = 0 f''(x)=0 f′′(x)=0 的点和 f ′ ′ ( x ) f''(x) f′′(x) 不存在的点。
- 用这些点划分定义域,列表分析 f ′ ′ ( x ) f''(x) f′′(x) 的符号,确定曲线的凹区间( f ′ ′ > 0 f''>0 f′′>0,Concave Up)和凸区间( f ′ ′ < 0 f''<0 f′′<0,Concave Down)。
- 判断凹凸性发生变化的连续点,计算拐点坐标。
- 确定渐近线: 按照前面介绍的方法,求出函数的水平渐近线、垂直渐近线和斜渐近线。
- 确定特殊点的坐标: 计算一些关键点的坐标,例如:
- 与坐标轴的交点(令 x = 0 x=0 x=0 求 y y y 截距,令 y = 0 y=0 y=0 求 x x x 截距)。
- 极值点、拐点。
- 描绘图形: 综合以上信息(定义域、对称性、周期性、单调区间、极值、凹凸区间、拐点、渐近线、特殊点),描绘出函数图形的草图。
示例
例 4: 作
y
=
4
(
x
+
1
)
x
2
−
2
y = \frac{4(x + 1)}{x^2} - 2
y=x24(x+1)−2 的图形。
(解:待补充)
§3.7 曲率
一、曲率的概念
-
曲率 (Curvature): 描述曲线弯曲程度的量。直观地说,曲线越弯曲,曲率越大;直线或接近直线的部分,曲率越小(直线曲率为0)。
-
与曲率有关的量:
考察曲线上某点附近的弯曲程度,可以考虑一小段弧。-
(1) 切线转动角度的大小: 在相同弧长上,切线方向变化的角度越大,曲线弯曲程度越大。如下图示意,弧 M 1 M 2 M_1 M_2 M1M2 较平缓,切线转角 Δ α 1 \Delta\alpha_1 Δα1 较小;弧 M 2 M 3 M_2 M_3 M2M3 较弯曲,切线转角 Δ α 2 \Delta\alpha_2 Δα2 较大。
-
(2) 曲线的弧长大小: 曲线的弧长越小,曲线的弯曲程度越大。如图,弧 M 1 M 2 M_{1}M_{2} M1M2与弧 N 1 N 2 N_{1}N_{2} N1N2切线转角相同,但弯曲程度不一样,显然,弧长小的弯曲程度大。
结论: 曲线的弯曲程度与切线转动角度成正比,与曲线弧长成反比。
-
二、曲率计算
1. 弧微分 (Arc Differential)
设曲线
y
=
f
(
x
)
y=f(x)
y=f(x) 在
(
a
,
b
)
(a, b)
(a,b) 内具有连续导数
f
′
(
x
)
f'(x)
f′(x) (保证曲线光滑且弧长可积)。
考虑曲线上点
(
x
,
y
)
(x, y)
(x,y) 到邻近点
(
x
+
Δ
x
,
y
+
Δ
y
)
(x+\Delta x, y+\Delta y)
(x+Δx,y+Δy) 的一小段弧长
Δ
s
\Delta s
Δs。当
Δ
x
\Delta x
Δx 很小时,弧长
Δ
s
\Delta s
Δs 可以用弦长
(
Δ
x
)
2
+
(
Δ
y
)
2
\sqrt{(\Delta x)^2 + (\Delta y)^2}
(Δx)2+(Δy)2 来近似。
Δ
s
≈
(
Δ
x
)
2
+
(
Δ
y
)
2
=
1
+
(
Δ
y
Δ
x
)
2
∣
Δ
x
∣
\Delta s \approx \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{1 + \left(\frac{\Delta y}{\Delta x}\right)^2} |\Delta x|
Δs≈(Δx)2+(Δy)2=1+(ΔxΔy)2∣Δx∣
当
Δ
x
→
0
\Delta x \to 0
Δx→0 时,
Δ
y
Δ
x
→
y
′
\frac{\Delta y}{\Delta x} \to y'
ΔxΔy→y′。取其微分形式,得到弧微分
d
s
ds
ds:
d
s
=
1
+
(
y
′
)
2
d
x
(
假设
d
x
>
0
)
\boxed{ds = \sqrt{1 + (y')^2} dx} \quad (\text{假设 } dx > 0)
ds=1+(y′)2dx(假设 dx>0)
或写成对称形式:
d
s
2
=
d
x
2
+
d
y
2
ds^2 = dx^2 + dy^2
ds2=dx2+dy2。弧微分
d
s
ds
ds 代表了弧长
s
s
s 的微小改变量。
2. 曲率计算公式
设曲线上一点
M
M
M 处的切线与
x
x
x 轴正向的夹角为
α
\alpha
α。当点从
M
M
M 移动到邻近点
M
′
M'
M′ 时,弧长变化了
Δ
s
\Delta s
Δs,切线转角变化了
Δ
α
\Delta \alpha
Δα。
定义弧
M
M
′
MM'
MM′ 上的平均曲率
k
ˉ
\bar{k}
kˉ 为:
k
ˉ
=
∣
Δ
α
Δ
s
∣
\bar{k} = \left| \frac{\Delta \alpha}{\Delta s} \right|
kˉ=
ΔsΔα
表示单位弧长上切线转角的平均变化率。
当点
M
′
→
M
M' \to M
M′→M(即
Δ
s
→
0
\Delta s \to 0
Δs→0)时,平均曲率的极限即为点
M
M
M 处的曲率
k
k
k:
k
=
lim
Δ
s
→
0
∣
Δ
α
Δ
s
∣
=
∣
d
α
d
s
∣
\boxed{k = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \left| \frac{d\alpha}{ds} \right|}
k=Δs→0lim
ΔsΔα
=
dsdα
现在推导用
y
′
,
y
′
′
y', y''
y′,y′′ 表示的曲率公式:
已知切线的斜率
tan
α
=
y
′
\tan \alpha = y'
tanα=y′。两边对
x
x
x 求导:
d
d
x
(
tan
α
)
=
d
d
x
(
y
′
)
\frac{d}{dx}(\tan \alpha) = \frac{d}{dx}(y')
dxd(tanα)=dxd(y′)
sec
2
α
d
α
d
x
=
y
′
′
\sec^2 \alpha \frac{d\alpha}{dx} = y''
sec2αdxdα=y′′
(
1
+
tan
2
α
)
d
α
d
x
=
y
′
′
(1 + \tan^2 \alpha) \frac{d\alpha}{dx} = y''
(1+tan2α)dxdα=y′′
(
1
+
(
y
′
)
2
)
d
α
d
x
=
y
′
′
(1 + (y')^2) \frac{d\alpha}{dx} = y''
(1+(y′)2)dxdα=y′′
所以
d
α
d
x
=
y
′
′
1
+
(
y
′
)
2
\frac{d\alpha}{dx} = \frac{y''}{1 + (y')^2}
dxdα=1+(y′)2y′′。
根据链式法则
d
α
d
s
=
d
α
/
d
x
d
s
/
d
x
\frac{d\alpha}{ds} = \frac{d\alpha/dx}{ds/dx}
dsdα=ds/dxdα/dx,以及
d
s
/
d
x
=
1
+
(
y
′
)
2
ds/dx = \sqrt{1+(y')^2}
ds/dx=1+(y′)2,可得:
d
α
d
s
=
y
′
′
1
+
(
y
′
)
2
1
+
(
y
′
)
2
=
y
′
′
(
1
+
(
y
′
)
2
)
3
/
2
\frac{d\alpha}{ds} = \frac{ \frac{y''}{1 + (y')^2} }{ \sqrt{1 + (y')^2} } = \frac{y''}{(1 + (y')^2)^{3/2}}
dsdα=1+(y′)21+(y′)2y′′=(1+(y′)2)3/2y′′
代入曲率定义
k
=
∣
d
α
d
s
∣
k = \left| \frac{d\alpha}{ds} \right|
k=
dsdα
,得到直角坐标系下的曲率公式:
k
=
∣
y
′
′
∣
(
1
+
(
y
′
)
2
)
3
/
2
\boxed{k = \frac{|y''|}{(1 + (y')^2)^{3/2}}}
k=(1+(y′)2)3/2∣y′′∣
注:
若曲线由参数方程给出:
{
x
=
x
(
t
)
y
=
y
(
t
)
\begin{cases} x = x(t) \\ y = y(t) \end{cases}
{x=x(t)y=y(t)
则曲率公式为:
k
=
∣
x
′
y
′
′
−
x
′
′
y
′
∣
(
x
′
2
+
y
′
2
)
3
/
2
\boxed{k = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{3/2}}}
k=(x′2+y′2)3/2∣x′y′′−x′′y′∣
其中
x
′
,
y
′
x', y'
x′,y′ 表示对参数
t
t
t 的一阶导数,
x
′
′
,
y
′
′
x'', y''
x′′,y′′ 表示对参数
t
t
t 的二阶导数。
示例
例 1: 计算双曲线
x
y
=
1
xy = 1
xy=1 在点
(
1
,
1
)
(1, 1)
(1,1) 处的曲率。
(解:待补充)
例 2: 抛物线
y
=
a
x
2
+
b
x
+
c
y = ax^2 + bx + c
y=ax2+bx+c (
a
≠
0
a \neq 0
a=0) 上哪一点的曲率最大?
(解:待补充)
例 3: 设圆的参数方程为
{
x
=
R
cos
t
y
=
R
sin
t
\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}
{x=Rcosty=Rsint
求圆上任意点处的曲率。
(解:待补充)
三、曲率圆与曲率半径
设曲线
y
=
f
(
x
)
y = f(x)
y=f(x) 在点
M
M
M 处的曲率为
k
k
k (
k
≠
0
k \neq 0
k=0)。
在点
M
M
M 处的法线上,在曲线凹的一侧取点
D
D
D,使得线段
D
M
DM
DM 的长度为
ρ
=
1
k
\rho = \frac{1}{k}
ρ=k1。
以
D
D
D 为圆心,
ρ
\rho
ρ 为半径作圆。这个圆称为曲线在点
M
M
M 处的曲率圆 (Circle of Curvature)。其半径
ρ
=
1
k
\rho = \frac{1}{k}
ρ=k1 称为曲线在点
M
M
M 处的曲率半径 (Radius of Curvature)。
曲率圆在点 M M M 处与原曲线具有相同的切线、相同的曲率,并且在点 M M M 附近与原曲线吻合得最好(二阶接触)。曲率半径 ρ \rho ρ 直观地表示了在该点附近最能近似曲线的圆的半径。曲率越大,曲率半径越小,表示曲线弯曲得越厉害。