Java数据结构——图:最小生成树(克鲁斯卡尔算法Kruskal)

一、基本概念

1. 基本思想:按照权值从小到大的顺序选择 n-1 条边,并保证这 n-1 条边不构成回路

2. 图解

1 :将边<E,F>加入 R 中。

边<E,F>的权值最小,因此将它加入到最小生成树结果 R 中。

2 :将边<C,D>加入 R 中。

上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果 R 中。

3 :将边<D,E>加入 R 中。

上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果 R 中。

4 :将边<B,F>加入 R 中。

上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果 R 中。

5 :将边<E,G>加入 R 中。

上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果 R 中。

6 :将边<A,B>加入 R 中。

上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果 R 中。

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

二、代码实现

问题一 对图的所有边按照权值大小进行排序。

问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

在将<E,F> <C,D> <D,E>加入到最小生成树 R 中之后,这几条边的顶点就都有了终点:

  1. C 的终点是 F 
  2. D 的终点是 F 
  3. E 的终点是 F 
  4. F 的终点是 F

关于终点的说明:

  1. 就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
  2. 因此,接下来,虽然<C,E>是权值最小的边。但是 C 和 E 的终点都是 F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的两个顶点不能都指向同一个终点,否则将构成回路。【后面有代码说明】

看一个公交站问题:

  1. 有北京有新增 7 个站点(A, B, C, D, E, F, G) ,现在需要修路把 7 个站点连通
  2. 各个站点的距离用边线表示(权) ,比如 A – B 距离 12 公里
  3. 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

核心:getEnd()

怎么找到终点的?用一个while循环,在ends[]数组中找该点的终点,以该点的终点再找改点的终点的终点,一直到找到的终点为0,就return最后找到的那个点

import java.util.Arrays;

public class KruskalCase {

    private int edgeNum; //边的个数
    private char[] vertexs; //顶点数组
    private int[][] matrix; //邻接矩阵
    //使用 INF 表示两个顶点不能连通
    private static final int INF = Integer.MAX_VALUE;

    public static void main(String[] args) {
        char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        //克鲁斯卡尔算法的邻接矩阵
        int matrix[][] = {
                /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
                /*A*/ {   0,  12, INF, INF, INF,  16,  14},
                /*B*/ {  12,   0,  10, INF, INF,   7, INF},
                /*C*/ { INF,  10,   0,   3,   5,   6, INF},
                /*D*/ { INF, INF,   3,   0,   4, INF, INF},
                /*E*/ { INF, INF,   5,   4,   0,   2,   8},
                /*F*/ {  16,   7,   6, INF,   2,   0,   9},
                /*G*/ {  14, INF, INF, INF,   8,   9,   0}};
        //大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.

        //创建KruskalCase 对象实例
        KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
        //输出构建的
        kruskalCase.print();
        kruskalCase.kruskal();

    }

    //构造器
    public KruskalCase(char[] vertexs, int[][] matrix) {
        //初始化顶点数和边的个数
        int vlen = vertexs.length;

        //初始化顶点, 复制拷贝的方式
        this.vertexs = new char[vlen];
        for(int i = 0; i < vertexs.length; i++) {
            this.vertexs[i] = vertexs[i];
        }

        //初始化边, 使用的是复制拷贝的方式
        this.matrix = new int[vlen][vlen];
        for(int i = 0; i < vlen; i++) {
            for(int j= 0; j < vlen; j++) {
                this.matrix[i][j] = matrix[i][j];
            }
        }
        //统计边的条数
        for(int i =0; i < vlen; i++) {
            for(int j = i+1; j < vlen; j++) {
                if(this.matrix[i][j] != INF) {
                    edgeNum++;
                }
            }
        }

    }
    public void kruskal() {
        int index = 0; //表示最后结果数组的索引
        int[] ends = new int[vertexs.length]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
        //创建结果数组, 保存最后的最小生成树
        EData[] rets = new EData[vertexs.length];

        //获取图中 所有的边的集合 , 一共有12边
        EData[] edges = getEdges();
        System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12

        //按照边的权值大小进行排序(从小到大)
        sortEdges(edges);

        //遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
        for(int i=0; i < edgeNum; i++) {
            //获取到第i条边的第一个顶点(起点)
            int p1 = getPosition(edges[i].start); //p1=4
            //获取到第i条边的第2个顶点
            int p2 = getPosition(edges[i].end); //p2 = 5

            //获取p1这个顶点在已有最小生成树中的终点
            int m = getEnd(ends, p1); //m = 4
            //获取p2这个顶点在已有最小生成树中的终点
            int n = getEnd(ends, p2); // n = 5
            //是否构成回路
            if(m != n) { //没有构成回路
                ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
                rets[index++] = edges[i]; //有一条边加入到rets数组
            }
        }
        //<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
        //统计并打印 "最小生成树", 输出  rets
        System.out.println("最小生成树为");
        for(int i = 0; i < index; i++) {
            System.out.println(rets[i]);
        }


    }

    //打印邻接矩阵
    public void print() {
        System.out.println("邻接矩阵为: \n");
        for(int i = 0; i < vertexs.length; i++) {
            for(int j=0; j < vertexs.length; j++) {
                System.out.printf("%12d", matrix[i][j]);
            }
            System.out.println();//换行
        }
    }

    /**
     * 功能:对边进行排序处理, 冒泡排序
     * @param edges 边的集合
     */
    private void sortEdges(EData[] edges) {
        for(int i = 0; i < edges.length - 1; i++) {
            for(int j = 0; j < edges.length - 1 - i; j++) {
                if(edges[j].weight > edges[j+1].weight) {//交换
                    EData tmp = edges[j];
                    edges[j] = edges[j+1];
                    edges[j+1] = tmp;
                }
            }
        }
    }
    /**
     *
     * @param ch 顶点的值,比如'A','B'
     * @return 返回ch顶点对应的下标,如果找不到,返回-1
     */
    private int getPosition(char ch) {
        for(int i = 0; i < vertexs.length; i++) {
            if(vertexs[i] == ch) {//找到
                return i;
            }
        }

        //找不到,返回-1
        return -1;
    }
    /**
     * 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
     * 是通过matrix 邻接矩阵来获取
     * EData[] 形式 [['A','B', 12], ['B','F',7], .....]
     * @return
     */
    private EData[] getEdges() {
        int index = 0;
        EData[] edges = new EData[edgeNum];
        for(int i = 0; i < vertexs.length; i++) {
            for(int j=i+1; j <vertexs.length; j++) {
                if(matrix[i][j] != INF) {
                    edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
                }
            }
        }
        return edges;
    }
    /**
     * 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
     * @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
     * @param i : 表示传入的顶点对应的下标
     * @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解
     */
    private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
        while(ends[i] != 0) {
            i = ends[i];
        }
        return i;
    }

}

//创建一个类EData ,它的对象实例就表示一条边
class EData {
    char start; //边的一个点
    char end; //边的另外一个点
    int weight; //边的权值
    //构造器
    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }
    //重写toString, 便于输出边信息
    @Override
    public String toString() {
        return "EData [<" + start + ", " + end + ">= " + weight + "]";
    }


}

  • 8
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最小生成树是指在一个连通中,找到一棵包含所有顶点且权值最小的生成树。普里姆算法克鲁斯卡尔算法都是常用的求解最小生成树算法。 1. 普里姆算法: - 算法思路: - 从中任意选择一个顶点作为起始点,将其加入最小生成树中。 - 从已加入最小生成树的顶点集合中,选择一个顶点v,将与v相连的边中权值最小的边(u, v)加入最小生成树中,并将顶点u加入最小生成树的顶点集合中。 - 重复上一步,直到最小生成树包含了中所有的顶点。 - 算法实现(邻接矩阵存储): ```python def prim(graph): num_vertices = len(graph) selected = [False] * num_vertices selected[0] = True for _ in range(num_vertices - 1): min_weight = float('inf') u, v = -1, -1 for i in range(num_vertices): if selected[i]: for j in range(num_vertices): if not selected[j] and graph[i][j] < min_weight: min_weight = graph[i][j] u, v = i, j selected[v] = True print(f"Add edge ({u}, {v}) with weight {min_weight} to the minimum spanning tree.") # 示例的邻接矩阵表示 graph = [ [0, 2, 0, 6, 0], [2, 0, 3, 8, 5], [0, 3, 0, 0, 7], [6, 8, 0, 0, 9], [0, 5, 7, 9, 0] ] prim(graph) ``` 2. 克鲁斯卡尔算法: - 算法思路: - 将中的所有边按照权值从小到大进行排序。 - 依次选择权值最小的边,如果这条边的两个顶点不在同一个连通分量中,则将这条边加入最小生成树中,并将这两个顶点合并到同一个连通分量中。 - 重复上一步,直到最小生成树包含了中所有的顶点。 - 算法实现(邻接表存储): ```python class Edge: def __init__(self, src, dest, weight): self.src = src self.dest = dest self.weight = weight class Graph: def __init__(self, num_vertices): self.num_vertices = num_vertices self.edges = [] def add_edge(self, src, dest, weight): self.edges.append(Edge(src, dest, weight)) def find(parent, i): if parent[i] == i: return i return find(parent, parent[i]) def union(parent, rank, x, y): xroot = find(parent, x) yroot = find(parent, y) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot else: parent[yroot] = xroot rank[xroot] += 1 def kruskal(graph): result = [] i, e = 0, 0 graph.edges = sorted(graph.edges, key=lambda x: x.weight) parent = [] rank = [] for node in range(graph.num_vertices): parent.append(node) rank.append(0) while e < graph.num_vertices - 1: edge = graph.edges[i] i += 1 x = find(parent, edge.src) y = find(parent, edge.dest) if x != y: e += 1 result.append(edge) union(parent, rank, x, y) for edge in result: print(f"Add edge ({edge.src}, {edge.dest}) with weight {edge.weight} to the minimum spanning tree.") # 示例的邻接表表示 graph = Graph(5) graph.add_edge(0, 1, 2) graph.add_edge(0, 3, 6) graph.add_edge(1, 2, 3) graph.add_edge(1, 3, 8) graph.add_edge(1, 4, 5) graph.add_edge(2, 4, 7) graph.add_edge(3, 4, 9) kruskal(graph) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值