蓝桥杯每日一题(贪心+多路算法)

本文通过一道编程题展示了如何运用贪心和多路归并算法解决钓鱼路线问题。通过分析,确定最优策略是选择直线路径并在每个阶段选择最大收益的鱼塘。C++代码实现了寻找前i个池塘中最大钓获量的过程。
摘要由CSDN通过智能技术生成

前两天有点感冒,今天的状态还可以,下面时我前天做的一道题,挺不错的

算法思想:

这一道题主要是考察了贪心以及多路归并的思想,那么在这两个算法的考察点在哪呢。

贪心:贪心的思想考察在对于钓鱼的路线上(钓鱼的路线大的来说可以分为两种。一种的来来回回,一种是走一条直线)。在这道题中,毫无疑问的是选择第二种走法,这就是贪心的一种体现。

对路归并:说其多路归并,大家应该都知道二路归并算法(归并排序),而在这个题中,对路归并就体现每一次都是选择最大的一个数,而在选择时所用到的fang'fa

题目分析:

在这道题中如果我们知道其能够到达的最远的一个池塘(i),然后再以此池塘为定点,去寻找i之前的钓鱼的最大值。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;

const int N=110;
int arr[N],d[N],L[N],temp[N];
int n,T;

int get(int k)
{
    //表示在第k个鱼塘在过去tamp[k]时间下的值为多少
    return max(0,arr[k]-d[k]*temp[k]);
}

int work(int n,int T)
{
    //在这个方法中寻找前i个池塘中的最大值
    int res=0;
    memset(temp,0,sizeof temp);//每次使用完方法之后恢复为0;
    
    for(int i=1;i<=T;i++)
    {
        int t=1;//每次都是让其从第一个池塘开始
        for(int j=1;j<=n;j++)
        {
            if(get(j)>get(t))
            {
                t=j;
            }
            //从第一个鱼塘开始遍历,找出最大值
        }
        res+=get(t);
        temp[t]++;//表示在这个鱼塘上用的时间
    }
    return res;
    
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++) cin>>arr[i];
    for(int i=1;i<=n;i++) cin>>d[i];
    for(int i=2;i<=n;i++)
    {
        cin>>L[i];
        L[i]+=L[i-1];
        
    }
    cin>>T;
    int res=0;//记录吊到鱼的最大值
    for(int i=1;i<=n;i++)
    {
        res=max(res,work(i,T-L[i]));//找出前i个鱼塘中,能够吊到的最大值
    }
    cout<<res;
 return 0;   
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值