前两天有点感冒,今天的状态还可以,下面时我前天做的一道题,挺不错的
算法思想:
这一道题主要是考察了贪心以及多路归并的思想,那么在这两个算法的考察点在哪呢。
贪心:贪心的思想考察在对于钓鱼的路线上(钓鱼的路线大的来说可以分为两种。一种的来来回回,一种是走一条直线)。在这道题中,毫无疑问的是选择第二种走法,这就是贪心的一种体现。
对路归并:说其多路归并,大家应该都知道二路归并算法(归并排序),而在这个题中,对路归并就体现每一次都是选择最大的一个数,而在选择时所用到的fang'fa
题目分析:
在这道题中如果我们知道其能够到达的最远的一个池塘(i),然后再以此池塘为定点,去寻找i之前的钓鱼的最大值。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=110;
int arr[N],d[N],L[N],temp[N];
int n,T;
int get(int k)
{
//表示在第k个鱼塘在过去tamp[k]时间下的值为多少
return max(0,arr[k]-d[k]*temp[k]);
}
int work(int n,int T)
{
//在这个方法中寻找前i个池塘中的最大值
int res=0;
memset(temp,0,sizeof temp);//每次使用完方法之后恢复为0;
for(int i=1;i<=T;i++)
{
int t=1;//每次都是让其从第一个池塘开始
for(int j=1;j<=n;j++)
{
if(get(j)>get(t))
{
t=j;
}
//从第一个鱼塘开始遍历,找出最大值
}
res+=get(t);
temp[t]++;//表示在这个鱼塘上用的时间
}
return res;
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>arr[i];
for(int i=1;i<=n;i++) cin>>d[i];
for(int i=2;i<=n;i++)
{
cin>>L[i];
L[i]+=L[i-1];
}
cin>>T;
int res=0;//记录吊到鱼的最大值
for(int i=1;i<=n;i++)
{
res=max(res,work(i,T-L[i]));//找出前i个鱼塘中,能够吊到的最大值
}
cout<<res;
return 0;
}