线性代数(第一章)

本文探讨了可逆矩阵的求解方法,强调了线性方程组相对简单,单位矩阵的灵活性以及高次矩阵可通过数归处理。作者指出结合律和分块矩阵的运用更为直观,强调逆矩阵的可交换性和在求解中的应用,包括通过乘法和单位矩阵构造进行证明。矩阵运算被视为对传统运算的扩展,深入理解其本质是关键。
摘要由CSDN通过智能技术生成

可逆矩阵有好多东西啊,怎么求,怎么证明

相比之下,线性方程组求解就要简单一些

单位矩阵的性质和运用好灵活,感觉短时间内很多解法只能用来欣赏

高次矩阵可以考虑数归

结合律和分块矩阵的运用比单位矩阵好掌握一点

逆矩阵是可交换的,可交换又可以运用

求矩阵往往需要乘矩阵然后消掉,证明题也是加减单位矩阵构造因式分解,前者是逆矩阵性质的运用,后者是正向的证明逆矩阵,但思想是一样的

感觉矩阵的运算就是对以前学过的运算的修饰,在深刻理解矩阵内涵的情况下,就可以如鱼得水了

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值