可逆矩阵有好多东西啊,怎么求,怎么证明
相比之下,线性方程组求解就要简单一些
单位矩阵的性质和运用好灵活,感觉短时间内很多解法只能用来欣赏
高次矩阵可以考虑数归
结合律和分块矩阵的运用比单位矩阵好掌握一点
逆矩阵是可交换的,可交换又可以运用
求矩阵往往需要乘矩阵然后消掉,证明题也是加减单位矩阵构造因式分解,前者是逆矩阵性质的运用,后者是正向的证明逆矩阵,但思想是一样的
感觉矩阵的运算就是对以前学过的运算的修饰,在深刻理解矩阵内涵的情况下,就可以如鱼得水了
可逆矩阵有好多东西啊,怎么求,怎么证明
相比之下,线性方程组求解就要简单一些
单位矩阵的性质和运用好灵活,感觉短时间内很多解法只能用来欣赏
高次矩阵可以考虑数归
结合律和分块矩阵的运用比单位矩阵好掌握一点
逆矩阵是可交换的,可交换又可以运用
求矩阵往往需要乘矩阵然后消掉,证明题也是加减单位矩阵构造因式分解,前者是逆矩阵性质的运用,后者是正向的证明逆矩阵,但思想是一样的
感觉矩阵的运算就是对以前学过的运算的修饰,在深刻理解矩阵内涵的情况下,就可以如鱼得水了