2679. 矩阵中的和

两种方法:

第一种:先对二维列表的每一列进行排序,然后对每一列的数据进行逐个比较,找出最大值。

class Solution:
    def matrixSum(self, nums: list[list[int]]) -> int:
        result=0
        m=len(nums)
        n=len(nums[0])
        for i in range(m):
            nums[i].sort()
        for j in range(n):
            max_1 = 0
            for i in range(m):
                max_1 = max(max_1,nums[i][j])
            result+=max_1
        return result

nums = Solution()
print(nums.matrixSum([[7,2,1],[6,4,2],[6,5,3],[3,2,1]]))

第二种:先对二维列表每行进行排序,后利用python的内置函数zip进行计算(时间复杂度底)

zip函数详细用法请看菜鸟教程:Python zip() 函数 | 菜鸟教程 (runoob.com)

class Solution:
    def matrixSum(self, nums: List[List[int]]) -> int:
        for row in nums:
            row.sort()
        result = 0
        for col in zip(*nums):
            result += max(col)
        return result

nums = Solution()
print(nums.matrixSum([[7,2,1],[6,4,2],[6,5,3],[3,2,1]]))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值