数学
分享自己的学习过程
普林斯顿uu
一名船舶电子电气工程大二学生
展开
-
傅里叶级数(Fourier)
一、傅里叶展开的意义1、泰勒(Tarlor展开的基本形式2、傅里叶(fourier)展开的基本形式二、三角函数系1、三角函数系2、性质3、积化和差公式4、例题讲解三、如何求解傅里叶级数中的a0、an、bn四、傅里叶级数1的展开方法和狄利克雷(Dirichlet)收敛定理1、展开方法傅里叶图像要求有周期性,进行周期延拓2、狄利克雷收敛证明图像五、正弦级数和余弦级数1、正弦级数和余弦级数的介绍2、奇延拓和偶延拓。原创 2024-01-21 18:32:24 · 4694 阅读 · 1 评论 -
拉普拉斯变换
简单说明一下Gamma Function的基本形式。四、拉普拉斯变换在微分方程中的应用。2、卷积和拉普拉斯变换的关系。一、拉普拉斯变换的基本形式。二、拉普拉斯变换的性质。三、卷积和拉普拉斯变换。原创 2024-01-21 08:42:54 · 446 阅读 · 1 评论 -
微分算子法
总结,微分算子法是一个求微分方程特解的好方法,可以在掌握求解微分方程基本方法的同时,学一下这个方法,对自身有很好的帮助。原创 2024-01-20 19:54:11 · 1780 阅读 · 0 评论 -
泊松方程的简单介绍
麦克斯韦方程组中的第一个,用来描述电荷和电场规律的一个方程一般形式一维形式。原创 2024-01-18 17:32:33 · 1603 阅读 · 1 评论 -
关于原命题与逆否命题同真同假
原命题:如果p,那么q. 逆否命题:如果非q,那么非p. 设原命题为真.若逆否命题为假,即如果非q,那么p.根据原命题为真,就会得到非q和q 同时为真.这是不可能的事情.所以逆否命题为真.同理,设原命题为假,则逆否命题也为假.原创 2023-07-09 18:50:33 · 353 阅读 · 0 评论 -
偏导函数不连续就函数不可微吗?
那么是不一定的,偏导数连续是可微的充分条件,即可微推不出偏导数就连续,也就是说,可微时,偏导数可能连续,可能不连续。反知,偏导数不连续时也可能可微。偏导数存在和函数连续是可微的必要条件。偏导数连续是可微的充分条件。原创 2023-07-09 18:57:04 · 4265 阅读 · 0 评论