《离散数学》第三章:命题逻辑(第一部分)

本文介绍了数理逻辑中的基本概念,包括命题的定义、复合命题的构造、命题联结词(如否定、合取、析取、蕴涵和等价)及其运算规则。文章还讨论了命题公式、真值表的生成,以及逻辑等价的概念和应用,涉及布尔检索、位运算以及命题公式的分类和判定问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 3.1什么是命题

3.1.1命题和非命题

注意:数理逻辑研究的中心问题是推理,而推理的前提和结论都是命题。因而命题是推理的基本 单位。

定义:具有确切真值的陈述句称为命题(proposition)。该命题可以取一个“值”,称为真值。真值只有 “真”和“假”两种,分别用“T”(或“1”) 和“F”(或“0”)表示。

注意:一切没有判断内容的句子,如命令句 (或祈使句)、感叹句、疑问句、二义性的陈述句等都不 能作为命题。

3.1.2复合命题(如何产生新命题)

定义:

(1)原子命题 (简单命题):不能再分解为更为 简单命题的命题。

(2)复合命题:可以分解为更为简单命题的命 题。这些简单命题之间是通过如“或 者”、“并且”、“不”、“如果...... 则......”、“当且仅当”等这样的关联词和标 点符号复合而成。

约定:通常用大写的带或不带下标的英文字母表示命题 (包括原子命题和复合命题)。 A,B,C,· · · ,P,Q,R,· · · , Ai,Bi,Ci,· · · ,Pi,Qi,Ri,· · ·

3.2命题联结词

3.2.1 否定联结词

定义:设 P 是任意一个命题,复合命题“非 P”(或 “P 的否定”)称为 P 的否定式(negation),记作¬P, “¬” 为否定联结词。P 为真当且仅当 ¬P 为假。

”¬” 是自然语言中的 “非”、“不”、“没有” 等的逻辑抽象。

3.2.2合取联结词

定义:设 P、Q 是任意两个命题,复合命题“P 并且 Q”(或 “P 和 Q”)称为 P 与 Q 的合取 式(conjunction),记作P ∧ Q,“∧” 为合取联结词。P ∧ Q 为真当且仅当 P,Q 同为真。

注意 “∧” 是自然语言中的 “并且”、“既…又…”、“但”、“和”、“与”、“不仅…而且…”、“虽然…但 是…”、“一面…, 一面…” 等的逻辑抽象;但不是所有的“和”,“与”都要使用合取联结词 表示,要根据句子的语义进行分析。

3.2.3析取联结词

定义:设 P、Q 是任意两个命题,复合命题“P 或 Q”称为 P 与 Q 的析取式(disjunction),记作P ∨ Q, “∨” 为析取联结词。P ∨ Q 为真当

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sɪʟᴇɴᴛ໊ོ5329

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值