3.1什么是命题
3.1.1命题和非命题
注意:数理逻辑研究的中心问题是推理,而推理的前提和结论都是命题。因而命题是推理的基本 单位。
定义:具有确切真值的陈述句称为命题(proposition)。该命题可以取一个“值”,称为真值。真值只有 “真”和“假”两种,分别用“T”(或“1”) 和“F”(或“0”)表示。
注意:一切没有判断内容的句子,如命令句 (或祈使句)、感叹句、疑问句、二义性的陈述句等都不 能作为命题。
3.1.2复合命题(如何产生新命题)
定义:
(1)原子命题 (简单命题):不能再分解为更为 简单命题的命题。
(2)复合命题:可以分解为更为简单命题的命 题。这些简单命题之间是通过如“或 者”、“并且”、“不”、“如果...... 则......”、“当且仅当”等这样的关联词和标 点符号复合而成。
约定:通常用大写的带或不带下标的英文字母表示命题 (包括原子命题和复合命题)。 A,B,C,· · · ,P,Q,R,· · · , Ai,Bi,Ci,· · · ,Pi,Qi,Ri,· · ·
3.2命题联结词
3.2.1 否定联结词
定义:设 P 是任意一个命题,复合命题“非 P”(或 “P 的否定”)称为 P 的否定式(negation),记作¬P, “¬” 为否定联结词。P 为真当且仅当 ¬P 为假。
”¬” 是自然语言中的 “非”、“不”、“没有” 等的逻辑抽象。
3.2.2合取联结词
定义:设 P、Q 是任意两个命题,复合命题“P 并且 Q”(或 “P 和 Q”)称为 P 与 Q 的合取 式(conjunction),记作P ∧ Q,“∧” 为合取联结词。P ∧ Q 为真当且仅当 P,Q 同为真。
注意 “∧” 是自然语言中的 “并且”、“既…又…”、“但”、“和”、“与”、“不仅…而且…”、“虽然…但 是…”、“一面…, 一面…” 等的逻辑抽象;但不是所有的“和”,“与”都要使用合取联结词 表示,要根据句子的语义进行分析。
3.2.3析取联结词
定义:设 P、Q 是任意两个命题,复合命题“P 或 Q”称为 P 与 Q 的析取式(disjunction),记作P ∨ Q, “∨” 为析取联结词。P ∨ Q 为真当