递增四元组

本文介绍了如何使用动态规划方法解决一个涉及递增序列的四元组问题,注意到数据中存在后效性(决策受过去影响),并通过dp[i][j]数组强化约束条件。给出了一段C++代码示例来计算满足条件的递增序列四元组数量。
摘要由CSDN通过智能技术生成

解法:

首先都可以想到dp[i]:第i个元素结尾的递增四元组有dp[i]个

然后发现有一组数据:2,3,6,1,5,8。会出现6结尾和5结尾的递增三元组,也就是未来的决策受过去影响,专业的说就是有后效性。需要强化约束条件,于是使用dp[i][j]。

第i个元素结尾的递增j元组有dp[i][j]个,显然每个元素自身就是一个一元组,dp[i][0]=1.

对于第i个元素,若存在a[k]<a[i],那么就可以把a[i]加在a[k]结尾的j元组,构成j+1元组。

迭代完善dp数组即可。

见例图:

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
#define endl '\n'
const int N = 1e3 + 3;
int dp[N][4];
int main() {
	int n; cin >> n;
	vector<int> vec(n);
	for (int i = 0; i < n; i++) cin >> vec[i];
	for (int i = 0; i < n; i++) {
		dp[i][0] = 1;
		for (int j = 1; j<4; j++) {
			for (int k = 0; k < i; k++) {
				if (vec[i] > vec[k])
					dp[i][j] += dp[k][j - 1];
			}
		}
	}
	int sum = 0;
	for (int i = 0; i < n; i++) {
		sum += dp[i][3];
		sum %= 3344;
	}
	cout << sum << endl;
	
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值